CSE 167:
Introduction to Computer Graphics
Lecture #7: Textures

Juargen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2015




Announcements

» Project 3 due tomorrow at 2pm
Code submission on Ted

Also try submitting to Classroom Github; we’ll use it for
projects 4-7 (instructions on Piazza)

» Midterm
Monday: discussion
Thursday: in class written exam, closed book
Planning to have grades on Ted by Friday afternoon
May cover all material through Tuesday’s lecture

] = UCSD



Lecture Overview

» Types of Geometry Shading

» Shading in OpenGL

Fixed-Function Shading
Programmable Shaders

Vertex Programs

Fragment Programs
GLSL

= UCSD



Types of Shading

» Per-triangle
» Per-vertex

» Per-pixel

= UCSD



Per-Triangle Shading

» A.k.a.flat shading

» Evaluate shading once per
triangle

» Advantage
Fast

» Disadvantage

Faceted appearance

) = UCSD



Per-Vertex Shading

» Known as Gouraud shading
(Henri Gouraud, 1971)

» Interpolates vertex colors
across triangles
» Advantages
Fast

Smoother surface appearance
than with flat shading

» Disadvantage
Problems with small highlights

= UCSD



Per-Pixel Shading

» A.k.a. Phong Interpolation (not to be
confused with Phong lllumination Model)

Rasterizer interpolates normals (instead of
colors) across triangles

lllumination model is evaluated at each pixel

Simulates shading with normals of a curved "
surface - -

» Advantage / ",
Higher quality than Gouraud shading E :

» Disadvantage 7 :\*9
Slow o

Source: Penny Rheingans, UMBC

' = UCSD



Gouraud vs. Per-Pixel Shading

» Gouraud shading has problems with highlights when
polygons are large

» More triangles improve the result, but reduce frame rate

Gouraud Per-Pixel

i = UCSD



Lecture Overview

» Texture Mapping
Overview
Wrapping
Texture coordinates

Anti-aliasing

’ = UCSD



Large Triangles

Pros:

» Often sufficient for simple
geometry

» Fast to render
Cons:

» Per vertex colors look boring
and computer-generated

° = UCSD



Texture Mapping

» Map textures (images) onto
surface polygons

» Same triangle count, much more
realistic appearance

: = UCSD



Texture Mapping

» Goal: map locations in texture to
locations on 3D geometry

» Texture coordinate space

Texture pixels (texels) have texture
coordinates (s,?)

» Convention

Bottom left corner of texture is at
(s,7) = (0,0)

Top right corner is at (s,7) = (1,1)

12

(1,1)

(0,0) >

A)

Texture coordinates

= UCSD



Texture Mapping

» Store 2D texture coordinates s,t with each triangle vertex

Vi
(s,7) = (0.65,0.75)

(1,1)

Vo
(s,1) = (0.6,0.4)

v, t
(s,1) =(0.4,0.45)

Triangle in any space before projection

(0,0) >

S
Texture coordinates

° = UCSD



Texture Mapping

» Each point on triangle gets color from its corresponding
point in texture

Vi (1,1)
(s,1) = (0.65,0.75)

Vo t
(s,1) = (0.6,0.4)

\p)
s,t) =(0.4,0.45
(5.1) = (0.4,0.45) 0.0) ;
Triangle in any space before projection A

Texture coordinates

b = UCSD



Texture Mapping
Primitives
P B
. | Modeling and viewing |

transformation

Shading
B

; Projection 5
I e

Rasterization
= =

Fragment processing | ‘ Includes texture mapping
= = B

Frame-buffer access
(z-buffering)

15 Image =UCSD



Texture Look-Up

» Given interpolated texture coordinates (s, t) at current

pixel
» Closest four texels in texture space are at

(Sorto)s (S1to)s (Soty)s (S1t))
» How to compute pixel color!?

(A
N

__+_
______+_

16



Nearest-Neighbor Interpolation

» Use color of closest texel

| I
t— -
| I
: :
TR
| \I
e S o

» Simple, but low quality and aliasing

! = UCSD



Bilinear Interpolation

|. Linear interpolation horizontally:

Ratio in s direction r:
s—S,

ry =

\)

5175
Ctop = teX(SO’tI) (I'rs) t tex(s|,t|) rQs

Cbot = teX(SO’ t-'O) (I'rs) + teX(SI’tO) rQs

18

o | | -



Bilinear Interpolation

2. Linear interpolation vertically

Ratio in t direction r:

[—1
r=——"
I =1
C = Chor (I'rt) + Ctop e

19




Texture Filtering in OpenGL

» GL_NEAREST: Nearest-Neighbor interpolation
» GL_LINEAR: Bilinear interpolation

» Example:
glTexParameteri(GL_TEXTURE_2D, GL_ TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

GL_NEAREST GL_LINEAR

Source: https.//open.gl/textures
20

= UCSD



Lecture Overview

» Texture Mapping
Wrapping
Texture coordinates

Anti-aliasing

3 = UCSD



Wrap Modes

» Texture image extends from [0,0] to [1,1] in texture
space
What if (s,7) texture coordinates are beyond that range!

» =2 Texture wrap modes

~ = UCSD



Repeat

» Repeat the texture

Creates discontinuities at edges

unless texture is designed to line up

(i

:.::t_‘,,.

Seamless brick wall texture
(by Christopher Revoir)

Texture Space =
* P < UCSD



Clamp

» Use edge value everywhere outside data range [0..1]
» Or use specified border color outside of range [O0..1]

S (i

S

Texture Space =
= P =< UCSD



Wrap Modes in OpenGL

» Default:
gl TexParameterf( GL_ TEXTURE_2D, GL_ TEXTURE_WRAP_S, GL_REPEAT );
gl TexParameterf( GL_ TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );

» Options for wrap mode:
GL_REPEAT
GL_MIRRORED REPEAT
GL CLAMP_TO_EDGE: repeats last pixel in the texture
GL CLAMP_TO_BORDER: requires border color to be set

GL_REPEAT GL_MIRRORED_REPEAT GL_CLAMP_TO_EDGE GL_CLAMP_TO_BORDER
Source:https://open.gl/textures

> = UCSD



Lecture Overview

» Texture Mapping
Wrapping
Texture coordinates

Anti-aliasing

. <=UCSD



Texture Coordinates

What if texture extends across multiple polygons?
—> Surface parameterization

» Mapping between 3D positions on surface and 2D texture
coordinates

Defined by texture coordinates of triangle vertices

» Options for mapping:
Parametric
Orthographic
Projective
Spherical
Cylindrical

Skin

! = UCSD



Cylindrical Mapping
» Similar to spherical mapping, but with cylindrical coordinates

Cylinder Sides

Texture Coordinates
(0.75. 1.0)

‘ (1.0.1.0)/ \(0.5.1.0)
— T

(0.25, 1.0)

S v (0.0,0.0)

S

” = UCSD



Spherical Mapping

» Use spherical coordinates
» “Shrink-wrap” sphere to object

Texture map Mapping result

~ = UCSD



Orthographic Mapping

» Use linear transformation of object’s xyz coordinates

» Example:

xyz in object space Xyz in camera space

? = UCSD



Parametric Mapping

» Surface given by parametric functions

a::f(u,v) y:f(u,’u) z:f(u,v)

» Very common in CAD

» Clamp (u#,v) parameters to [0..1] and use as texture
coordinates (s,7)

? = UCSD



Lecture Overview

» Texture Mapping
Wrapping
Texture coordinates

Anti-aliasing

. <=UCSD



Aliasing

» What could cause this aliasing effect?

R

i M A A (A i/ o‘. IAMS

e NN —

S NN
N

5; TR
%

” =UCSD



Aliasing

Sufficiently
sampled,

no aliasing ~ + + - T 1 T Che

i) Pout sacydirng within O Nyqont bust

Insufficiently
sampled,

aliasing TTTTTTTTT

©) Pomt eamyiong beyood the Nyquas nait

Image: Robert L. Cook

High frequencies in the input data can appear as
lower frequencies in the sampled signal

) <= UCSD



Antialiasing: Intuition

» Pixel may cover large area on triangle in camera space
» Corresponds to many texels in texture space
» Need to compute average

Image plane Camera space  Texture space

Texels

“Pixel area




Lecture Overview

» Texture Mapping
Mip Mapping

” = UCSD



Antialiasing Using Mip-Maps

» Averaging over texels is expensive
Many texels as objects get smaller
Large memory access and compuation cost
» Precompute filtered (averaged) textures
Mip-maps
» Practical solution to aliasing problem
Fast and simple

Available in OpenGL, implemented in GPUs
Reasonable quality

37

= UCSD



Mipmaps

» MIP stands for multum in parvo = “much in little” (Williams
1983)

Before rendering

» Pre-compute and store down scaled versions of textures
Reduce resolution by factors of two successively

Use high quality filtering (averaging) scheme

» Increases memory cost by |/3
1/3 = Y4t 1/16+1/64+...

» Width and height of texture should be powers of two (non-
power of two supported since OpenGL 2.0)

” = UCSD



» Example: resolutions 512x512,256x256, 128x128, 64x64,
32x32 pixels

A

J \fi. “ ;., \
i L gad e x

» s9Level 0



» One texel in level 4 is the average of 4*=256 texels in
level O







Rendering With Mipmaps

» “Mipmapping”

» Interpolate texture coordinates of each pixel as without
mipmapping

» Compute approximate size of pixel in texture space

» Look up color in nearest mipmap
E.g., if pixel corresponds to 10x10 texels use mipmap level 3
Use nearest neighbor or bilinear interpolation as before

* = UCSD



Mipmapping

Image plane Camera space  Texture space

Texels

- Mip-map level 0
° Mip-map level 1
° Mip-map level 2

. ° Mip-rege eyetSpD



Nearest Mipmap, Nearest Neighbor

» Visible transition between mipmap levels




Nearest Mipmap, Bilinear

» Visible transition between mipmap levels




Trilinear Mipmapping

» Use two nearest mipmap levels

E.g., if pixel corresponds to 10x10 texels, use mipmap levels 3
(8x8) and 4 (16x16)

» 2-Step approach:

Step |: perform bilinear interpolation in both mip-maps
Step 2:linearly interpolate between the results

» Requires access to 8 texels for each pixel

» Supported by hardware without performance penalty

* = UCSD



More Info

» Mipmapping tutorial w/source code:

Y = UCSD



