
Discussion 8
CSE 167

Outline

● FAQ and More OpenGL Quirks
○ Skybox and Textures
○ Disco Ball

● Introduction to Project 4
○ Lighting (Directional lights and Toon Shading)
○ Implementing Collision Detection

Any Questions on
Project 3?

Check the following suggestions:

● Can your program render a cube to screen?

● Are you actually parsing all 6 skybox pictures in your code and generating the

textures correctly?

● Did you properly activate the relevant texture unit and bind the cubemap texture

before the draw call?

So Your Skybox Ain’t Displayin’...

Check the following suggestions:

● Can your program render a cube to screen?

● Are you actually parsing all 6 skybox pictures in your code and generating the

textures correctly?

● Did you properly activate the relevant texture unit and bind the cubemap texture

before the draw call?

So Your Skybox Ain’t Displayin’...

A Cube to Render

● A skybox looks like a big cube with textures painted over its inside walls

● Render a cube then make it big!

● The starter code from Project 1 has a cube class...

Using Textures in OpenGL

From the OpenGL Programming Guide v4.3:

Using OpenGL’s texture-mapping capabilities requires the following steps

1. Create a texture object and load texel data to it

2. Include texture coordinates with your vertices.
a. In this case, the cubemap’s vertices serve as the texture coordinates

3. Associate a texture sampler with each texture map in your shader

4. Retrieve the texel values using the texture sampler

The following slides are taken from learnopengl.com and The OpenGL Programming Guide v4.3

1) Create a Texture

● Similar to how one would create and store data in a VBO

● Use glGenTextures to reserve a name/ID for the texture

● Use glBindTexture to give the texture actual properties

● glBindTexture(GL_TEXTURE_CUBE_MAP, texID) to bind a cubemap to a given texture
○ texID is a GLuint texture reserved using glGenTextures
○ The 1st time this is called on texID, it will be assigned a type of GL_TEXTURE_CUBE_MAP
○ Subsequent calls on texID will activate it
○ Binding to 0 = removing any texture from GL_TEXTURE_CUBE_MAP

1) (cont’d) Load Data

● We use stb_image to load image data into memory.

● glTexImage2D will load data into the texture object.

● Make sure you bind the texture you’re going to modify first!

2) Associate texture coordinates per vertex

● For a cubemap, the texture coordinates are 3D vectors.

● If the cubemap is centered at the world origin (0, 0, 0), we can just use the vertex

positions!

● Otherwise, you may have to load in a VBO of texture coordinates

3) - 4) Use a Texture Sampler to get Texel
Data

Retrieve texel value using texture coordinates

Tell OpenGL how the Texture Sampler deals with “edge cases”

● What is glDepthMask(GL_FALSE)?
○ It disables the z-buffer algorithm, meaning that the cube will just write over the entire frame

regardless of distance to the camera.
○ We’re using a really big cube so we don’t use it.

● Why are they using a small cube?
○ They use the depth mask trick and drawing the cube to the color buffer first. Any subsequent draw

call to another object will just overwrite the pixels
○ Removing the translation part of the view matrix using mat4(mat3(view)) means that the cube is

always rendered as if the camera was centered at (0,0,0)

● What about glDepthFunc?
○ It’s part of the optimized implementation of the skybox. It sets how depth values are compared.
○ The optimization trick is pretty cool but you don’t need to know about it

But What About LearnOpenGL’s Tutorial?

Skybox Culling

● To use single-sided rendering, call following
functions
○ glEnable(GL_CULL_FACE);
○ glCullFace(GL_FRONT);

OR

● glEnable(GL_CULL_FACE);

● glCullFace(GL_BACK);
● Should be called before you call draw your

skybox

Disco Ball Reflections

● Reflections look off?
○ Try calling glDisable(GL_CULL_FACE) right after

you draw your skybox, so it does not interfere with
other objects being drawn

Project 4
Among Us in 167

http://www.youtube.com/watch?v=fNM9_d5LAzw

Directional Lights

● Light from a certain direction
● Passing in light direction to shader, as opposed to light position

○ No attenuation (light is infinitely far away)
○ Remember to negate passed in direction before using in

calculations (L = -d)
○ https://learnopengl.com/Lighting/Multiple-lights

Toon Shading

● Silhouette edge detection
● Discretize shading

Silhouette Edge Detection

● Gives black outline to edges of your obj
○ Emphasize pixels with normals

perpendicular to viewing direction.
● Edge = max(0, dot(n,v));

○ n = normal
○ v = viewing direction

● If Edge < 0.01, draw black.

Discretize Shading

● Create thresholds to create fewer shades,
creating a cartoonish look

Intensity: Calculate diffuse and specular, then multiply them
together

Bounding Spheres

● Encase the entire object in a tight sphere

● Pros
○ Easy to understand
○ Sphere/sphere & sphere/plane intersection

testing inexpensive and simpler to implement

● Cons
○ Not a snug fit for the objects => inaccuracy

compared to bounding boxes or comparing
each individual triangle

● Just need two pieces of info
○ Radius
○ Center

Bounding Plane

● Can be represented by a normal vector n and

a distance from origin to plane dot(p, n) where

p is some point on the plane

● 6 of these make a bounding box

Sphere-Sphere Collisions

● Simple

● If the distance between the two centers is < r1 + r2, then we have an intersection!

Sphere-Plane Intersection

● Essentially:
a. Plug center into point-plane distance formula (see Lecture 13: Visibility Culling)
b. If dist <= r, we have an intersection!

