CSE 167

Discussion \#8

I'm the only human who can do it

Coaster Orientation

Coaster Orientation

Rotation \&
Translation

Coaster Rotation

New Z = normalize(target - pos)

Coaster Rotation

$$
\begin{aligned}
\text { New } Z & =\text { normalize(target }- \text { pos }) \\
\text { New } X= & \text { normalize(cross }(\text { New } Z, \\
& \langle 0,1,0\rangle))
\end{aligned}
$$

Coaster Rotation

Coaster Rotation

$$
\begin{aligned}
\text { New } Z= & \text { normalize(target }- \text { pos }) \\
\text { New } X= & \text { normalize(cross }(\text { New } Z, \\
& <0,1,0\rangle)) \\
\text { New } Y= & \text { normalize(cross (New } X, \\
& \text { New } Z))
\end{aligned}
$$

Construct the transformation matrix, given New (X, Y, Z) and pos

target

Moving Points

z-axis

$$
z_{C}=\frac{e-d}{\|e-d\|}
$$

$$
\boldsymbol{x}_{C}=\frac{\boldsymbol{u} \boldsymbol{p} \times \mathbf{z}_{C}}{\left\|\boldsymbol{u} \boldsymbol{p} \times \mathbf{z}_{C}\right\|}
$$

y-axis

$$
\begin{aligned}
& \boldsymbol{y}_{C}=z_{C} \times x_{C}=\frac{u p}{\| a p N} \\
& \boldsymbol{C}=\left[\begin{array}{cccc}
x_{C} & y_{C} & z_{C} & e^{2} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Moving Points

- If we take our control point's position and add the camera's scaled x-axis and scaled y-axis, we can move the control point in the camera's $x-y$ plane
- control_pos $=$ control_pos $+s_{x \text {-axis }}{ }^{*} x$-axis $+s_{y \text {-axis }}{ }^{*} y$-axis

