
CSE 167:

Introduction to Computer Graphics

Lecture #7: Illumination

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2020

Announcements

� Sunday, October 25 at 11:59pm:

� Homework Project 1 due

� Submission on Canvas

� Follow instructions at end of project write-up

� Next Wednesday at 1pm:

� Discussion Project 2

� Sunday, November 8th at 11:59pm:

� Homework Project 2 due

� Extra extra credit option for project 2:

� Degree completion plan

� Submission independent of homework project

2

LERP Function

� LERP =
Linear intERPolation

� Can be used with
scalars or vectors, and
even points

� Useful for smooth
transitions

3

Shading

Normal Shading

5

� Coloring based on
surface normal

� X coordinate maps to
Red

� Y coordinate maps to
Green

� Z coordinate maps to
Blue

� Need to map normal
range of -1 to +1 to
color range of 0.0 to 1.0

Realistic Shading

� Compute interaction of light with surfaces

� Requires simulation of physics

� “Global illumination”

� Multiple bounces of light

� Computationally expensive, minutes per image

� Used in movies, architectural design, etc.

� Appearance = Material Definition + Light Sources

6

Global Illumination

7

Interactive Applications

� No physics-based simulation

� Simplified models

� Reproduce perceptually most important effects

� Local illumination

� Only one bounce of light between light source and viewer

One bounce of light
Surface

8

Local Illumination

� Gives material its color

� Light can be reflected by
� Mirror

� White wall

� Glossy metal

� etc.

9

Local Illumination

� Model reflection of light at surfaces
� Assumption: no subsurface scattering

� Bidirectional reflectance distribution function (BRDF)
� Given light direction, viewing direction, how much light is

reflected towards the viewer

� For any pair of light/viewing directions!

10

Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular

11

Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular

12

Diffuse Reflection

� Ideal diffuse material reflects light equally in all directions

� View-independent

� Matte, not shiny materials

� Paper

� Unfinished wood

� Unpolished stone

13

Diffuse Reflection

� Beam of parallel rays shining on a surface

� Area covered by beam varies with the angle between the beam and the
normal

� The larger the area, the less incident light per area

� Incident light per unit area is proportional to the cosine of the angle
between the normal and the light rays

� Object darkens as normal turns away from light

� Lambert’s cosine law (Johann Heinrich Lambert, 1760)

� Diffuse surfaces are also called Lambertian surfaces

nnn

14

Diffuse Reflection

� Given

� Unit (normalized!) surface normal n

� Unit (normalized!) light direction L

� Material diffuse reflectance (material color) kd

� Light color (intensity) cl

� Diffuse color cd is:

Proportional to cosine

between normal and light

15

Diffuse Reflection

Notes

� Parameters kd, cl are r,g,b vectors (colors)

� Need to compute r,g,b values of diffuse color cd

separately

� Parameters in this model have no precise physical
meaning

� cl: intensity and color of light source

� kd: fraction of reflected light, material color

16

Diffuse Reflection

� Provides visual cues

� Surface curvature

� Depth variation

Lambertian (diffuse) sphere under different lighting directions

17

Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular

18

Specular Reflection

� Shiny surfaces

� Polished metal

� Glossy car finish

� Plastics

� Specular highlight

� Blurred reflection of the
light source

� Position of highlight
depends on viewing
direction

Specular highlight

19

Specular Reflection

� Ideal specular reflection is mirror reflection

� Perfectly smooth surface

� Incoming light ray is bounced in single direction

� Angle of incidence equals angle of reflection

20

Projection of vector on another vector

21

Law of Reflection

� Angle of incidence equals angle of reflection

22

Using these equations:

We can derive the reflection vector R:

Specular Reflection

� Many materials are not perfect mirrors

� Glossy materials

Glossy teapot

23

Glossy Materials

� Assume surface composed of small mirrors with random
orientation (micro-facets)

� Smooth surfaces
� Micro-facet normals close to surface normal
� Sharp highlights

� Rough surfaces
� Micro-facet normals vary strongly
� Blurry highlight

Polished

Smooth

Rough

Very rough
24

Glossy Surfaces

� Expect most light to be reflected in mirror direction

� Because of micro-facets, some light is reflected slightly off
ideal reflection direction

� Reflection

� Brightest when view vector is aligned with reflection

� Decreases as angle between view vector and reflection
direction increases

25

Phong Shading Model

� Developed by Bui Tuong Phong in1973

� Specular reflectance coefficient (color) ks

� Phong exponent p

� Greater p means smaller (sharper) highlight

26

Phong Shading Model

27

Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular

28

Ambient Light

� In real world, light is bounced all around scene

� Could use global illumination techniques to simulate

� Simple approximation
� Add constant ambient light at each point: kaca

� Ambient light color: ca

� Ambient reflection coefficient: ka

� Areas with no direct illumination are not completely dark

29

Complete Phong Shading Model

� Phong model supports multiple light sources

� All light colors c and material coefficients k are 3-
component vectors for red, green, blue

30

� ����� �� �	 · � � � � · � � � ��
	

Image by Brad Smith

Types of Shading

� Per-triangle

� Per-vertex

� Per-pixel

31

Per-Triangle Shading

� A.k.a. flat shading

� Evaluate shading once per triangle,
based on normal vector

� Advantage

� Fast

� Disadvantage

� Faceted appearance

32

Per-Vertex Shading

� Known as Gouraud shading
(Henri Gouraud, 1971)

� Interpolates vertex colors
across triangles

� Advantages
� Fast (no less work in fragment

shader)

� Smoother surface appearance
than with flat shading

� Disadvantage
� Problems with small highlights

33

Per-Pixel Shading

� A.k.a. Phong Interpolation (not to be
confused with Phong Illumination Model)

� Rasterizer interpolates normals (instead of
colors) across triangles

� Illumination model is evaluated at each pixel

� Simulates shading with normals of a curved
surface

� Advantage

� Highest rendering quality

� Disadvantage

� Slow

34

Source: Penny Rheingans, UMBC

Gouraud vs. Per-Pixel Shading

� Gouraud shading has problems with highlights when
polygons are large

� More triangles improve the result, but reduce frame rate

� Video: https://www.youtube.com/watch?v=Fl5i-
UnlQps&feature=youtu.be

Per-Vertex

(Gouraud)

Per-Pixel
35

Summary

� Per-pixel shading looks best and is only slightly more
computationally expensive

� On slower GPUs Gouraud shading may make sense (e.g.,
in OpenGL ES on older mobile devices)

� In CSE 167 we always use per-pixel shading

36

Lights

Light Sources

� Real light sources can have complex properties

� Geometric area over which light is produced

� Anisotropy (directionally dependent)

� Reflective surfaces act as light sources (indirect light)

� Need to use simplified model for real-time rendering

38

Types of Light Sources

� At each point on surfaces we need to know

� Direction of incoming light (the L vector)

� Intensity of incoming light (the c
l
values)

� Three light types:

� Directional: from a specific direction

� Point light: from a specific point

� Spotlight: from a specific point with intensity that depends on
direction

39

Lecture Overview

� Light Sources

� Directional Lights

� Point Lights

� Spot Lights

40

Directional Light

� Light from a distant source

� Light rays are parallel

� Direction and intensity are the same everywhere

� As if the source were infinitely far away

� Good approximation of sunlight

� Specified by a unit length direction vector, and a color

Light source

Receiving surface

41

Lecture Overview

� Light Sources

� Directional Lights

� Point Lights

� Spot Lights

42

Point Lights

� Similar to light bulbs

� Infinitely small point radiates light equally in all directions

� Light vector varies across receiving surface

� What is light intensity over distance proportional to?

� Intensity drops off proportionally to the inverse square of the
distance from the light

� Reason for inverse square falloff:
Surface area A of sphere:

A = 4 π r2

43

Point Light Math

c
l

v

p
c

src

c
l

v

Light source

Receiving surface

44

At any point v on the

surface:

Attenuation:

Light Attenuation

� Adding constant factor k to denominator for better
control

� Quadratic attenuation: k*(p-v)2

� Most computationally expensive, most physically correct

� Linear attenuation: k*(p-v)

� Less expensive, less accurate

� Constant attenuation: k

� Fastest computation, least accurate

45

Lecture Overview

� Light Sources

� Directional Lights

� Point Lights

� Spot Lights

46

� Like point light, but intensity depends on direction

Parameters

� Position: location of light source

� Cone direction d: center axis of light source

� Intensity falloff:

� Beam width (cone angle ����)

� The way the light tapers off at the edges of the beam
(cosine exponent f)

Spotlights

47

Spotlights

Light source

Receiving surface

48

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Scan conversion,

visibility

Scene data

Image

• Place object in 3D space

• Map triangles to 2D

• Draw triangles

– Per pixel shading

• Determine colors of vertices

– Per vertex shading

49

Vertex Shader

50

#version 150

uniform mat4 camera;
uniform mat4 model;

in vec3 vert;
in vec2 vertTexCoord;
in vec3 vertNormal;

out vec3 fragVert;
out vec2 fragTexCoord;
out vec3 fragNormal;

void main()
{

// Pass some variables to the fragment shader
fragTexCoord = vertTexCoord;
fragNormal = vertNormal;
fragVert = vert;

// Apply all matrix transformations to vert
gl_Position = camera * model * vec4(vert, 1);

}

Source: Tom Dallling’s OpenGL Tutorial

Fragment Shader for Diffuse Reflection

51

#version 150

uniform mat4 model;
uniform sampler2D tex;

uniform struct Light
{

vec4 position; // if w component=0 it’s directional
vec3 intensities; // a.k.a the color of the light
float attenuation; // only needed for point and spotlights
float ambientCoefficient;
float coneAngle; // only needed for spotlights
vec3 coneDirection; // only needed for spotlights
float exponent; // cosine exponent for how light tapers off

} light;

in vec2 fragTexCoord;
in vec3 fragNormal;
in vec3 fragVert;

out vec4 finalColor;

Source: Tom Dallling’s OpenGL Tutorial

Fragment Shader Part 2

52

void main()
{

// calculate normal in world coordinates
mat3 normalMatrix = transpose(inverse(mat3(model)));
vec3 normal = normalize(normalMatrix * fragNormal);

// calculate the location of this fragment (pixel) in world coordinates
vec3 fragPosition = vec3(model * vec4(fragVert, 1));

// calculate the vector from this pixels surface to the light source
vec3 surfaceToLight = light.position - fragPosition;

// calculate the cosine of the angle of incidence
float brightness = dot(normal, surfaceToLight) / (length(surfaceToLight) * length(normal));
brightness = clamp(brightness, 0, 1);

// calculate final color of the pixel, based on:
// 1. The angle of incidence: brightness
// 2. The color/intensities of the light: light.intensities
// 3. The texture and texture coord: texture(tex, fragTexCoord)
vec4 surfaceColor = texture(tex, fragTexCoord);
finalColor = vec4(brightness * light.intensities * surfaceColor.rgb, surfaceColor.a);

}

Source: Tom Dallling’s OpenGL Tutorial

Lighting with GLSL

� Tutorial for diffuse lighting with a point light

� http://www.tomdalling.com/blog/modern-opengl/06-diffuse-
point-lighting/

53

