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Announcements

� Sunday, October 25 at 11:59pm:

� Homework Project 1 due

� Submission on Canvas

� Follow instructions at end of project write-up

� Next Wednesday at 1pm:

� Discussion Project 2

� Sunday, November 8th at 11:59pm:

� Homework Project 2 due

� Extra extra credit option for project 2:

� Degree completion plan

� Submission independent of homework project
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LERP Function

� LERP = 
Linear intERPolation

� Can be used with 
scalars or vectors, and 
even points

� Useful for smooth 
transitions
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Shading



Normal Shading
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� Coloring based on 
surface normal

� X coordinate maps to
Red

� Y coordinate maps to 
Green

� Z coordinate maps to
Blue

� Need to map normal 
range of -1 to +1 to 
color range of 0.0 to 1.0



Realistic Shading

� Compute interaction of light with surfaces

� Requires simulation of physics

� “Global illumination”

� Multiple bounces of light

� Computationally expensive, minutes per image

� Used in movies, architectural design, etc.

� Appearance = Material Definition + Light Sources
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Global Illumination
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Interactive Applications

� No physics-based simulation

� Simplified models

� Reproduce perceptually most important effects

� Local illumination

� Only one bounce of light between light source and viewer

One bounce of light
Surface
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Local Illumination

� Gives material its color

� Light can be reflected by
� Mirror

� White wall

� Glossy metal

� etc.
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Local Illumination

� Model reflection of light at surfaces
� Assumption: no subsurface scattering

� Bidirectional reflectance distribution function (BRDF)
� Given light direction, viewing direction, how much light is 

reflected towards the viewer

� For any pair of light/viewing directions!
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Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular
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Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular
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Diffuse Reflection

� Ideal diffuse material reflects light equally in all directions

� View-independent

� Matte, not shiny materials

� Paper

� Unfinished wood

� Unpolished stone
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Diffuse Reflection

� Beam of parallel rays shining on a surface

� Area covered by beam varies with the angle between the beam and the 
normal

� The larger the area, the less incident light per area

� Incident light per unit area is proportional to the cosine of the angle 
between the normal and the light rays

� Object darkens as normal turns away from light

� Lambert’s cosine law (Johann Heinrich Lambert, 1760)

� Diffuse surfaces are also called Lambertian surfaces

nnn
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Diffuse Reflection

� Given

� Unit (normalized!) surface normal n

� Unit (normalized!) light direction L

� Material diffuse reflectance (material color) kd

� Light color (intensity) cl

� Diffuse color cd is:

Proportional to cosine

between normal and light
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Diffuse Reflection

Notes

� Parameters kd, cl are r,g,b vectors (colors)

� Need to compute r,g,b values of diffuse color cd

separately

� Parameters in this model have no precise physical 
meaning

� cl: intensity and color of light source

� kd: fraction of reflected light, material color
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Diffuse Reflection

� Provides visual cues

� Surface curvature

� Depth variation

Lambertian (diffuse) sphere under different lighting directions
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Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular
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Specular Reflection

� Shiny surfaces

� Polished metal

� Glossy car finish

� Plastics

� Specular highlight

� Blurred reflection of the 
light source

� Position of highlight 
depends on viewing 
direction

Specular highlight
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Specular Reflection

� Ideal specular reflection is mirror reflection

� Perfectly smooth surface

� Incoming light ray is bounced in single direction

� Angle of incidence equals angle of reflection
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Projection of vector on another vector
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Law of Reflection

� Angle of incidence equals angle of reflection
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Using these equations:

We can derive the reflection vector R:



Specular Reflection

� Many materials are not perfect mirrors

� Glossy materials

Glossy teapot
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Glossy Materials

� Assume surface composed of small mirrors with random 
orientation (micro-facets)

� Smooth surfaces
� Micro-facet normals close to surface normal
� Sharp highlights

� Rough surfaces
� Micro-facet normals vary strongly
� Blurry highlight

Polished

Smooth

Rough

Very rough
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Glossy Surfaces

� Expect most light to be reflected in mirror direction

� Because of micro-facets, some light is reflected slightly off 
ideal reflection direction

� Reflection

� Brightest when view vector is aligned with reflection

� Decreases as angle between view vector and reflection 
direction increases
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Phong Shading Model

� Developed by Bui Tuong Phong in1973

� Specular reflectance coefficient (color) ks

� Phong exponent p

� Greater p means smaller (sharper) highlight
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Phong Shading Model
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Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular
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Ambient Light

� In real world, light is bounced all around scene

� Could use global illumination techniques to simulate

� Simple approximation
� Add constant ambient light at each point: kaca

� Ambient light color: ca

� Ambient reflection coefficient: ka

� Areas with no direct illumination are not completely dark
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Complete Phong Shading Model

� Phong model supports multiple light sources

� All light colors c and material coefficients k are 3-
component vectors for red, green, blue
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Types of Shading

� Per-triangle

� Per-vertex

� Per-pixel
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Per-Triangle Shading

� A.k.a. flat shading

� Evaluate shading once per triangle, 
based on normal vector

� Advantage

� Fast

� Disadvantage

� Faceted appearance
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Per-Vertex Shading

� Known as Gouraud shading 
( Henri Gouraud, 1971)

� Interpolates vertex colors 
across triangles

� Advantages
� Fast (no less work in fragment 

shader)

� Smoother surface appearance 
than with flat shading

� Disadvantage
� Problems with small highlights
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Per-Pixel Shading

� A.k.a. Phong Interpolation (not to be 
confused with Phong Illumination Model)

� Rasterizer interpolates normals (instead of 
colors) across triangles

� Illumination model is evaluated at each pixel

� Simulates shading with normals of a curved 
surface

� Advantage

� Highest rendering quality

� Disadvantage

� Slow
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Gouraud vs. Per-Pixel Shading

� Gouraud shading has problems with highlights when 
polygons are large

� More triangles improve the result, but reduce frame rate

� Video: https://www.youtube.com/watch?v=Fl5i-
UnlQps&feature=youtu.be

Per-Vertex

(Gouraud)

Per-Pixel
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Summary

� Per-pixel shading looks best and is only slightly more 
computationally expensive

� On slower GPUs Gouraud shading may make sense (e.g., 
in OpenGL ES on older mobile devices)

� In CSE 167 we always use per-pixel shading
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Lights



Light Sources

� Real light sources can have complex properties

� Geometric area over which light is produced

� Anisotropy (directionally dependent)

� Reflective surfaces act as light sources (indirect light)

� Need to use simplified model for real-time rendering
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Types of Light Sources

� At each point on surfaces we need to know

� Direction of incoming light (the L vector)

� Intensity of incoming light (the c
l
values)

� Three light types:

� Directional: from a specific direction 

� Point light: from a specific point

� Spotlight: from a specific point with intensity that depends on 
direction
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Lecture Overview

� Light Sources

� Directional Lights

� Point Lights

� Spot Lights
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Directional Light

� Light from a distant source

� Light rays are parallel

� Direction and intensity are the same everywhere 

� As if the source were infinitely far away

� Good approximation of sunlight

� Specified by a unit length direction vector, and a color

Light source

Receiving surface
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Lecture Overview

� Light Sources

� Directional Lights

� Point Lights

� Spot Lights
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Point Lights

� Similar to light bulbs

� Infinitely small point radiates light equally in all directions

� Light vector varies across receiving surface

� What is light intensity over distance proportional to?

� Intensity drops off proportionally to the inverse square of the 
distance from the light

� Reason for inverse square falloff: 
Surface area A of sphere:

A = 4 π r2
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Point Light Math

c
l

v

p
c

src

c
l

v

Light source

Receiving surface
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At any point v on the 

surface:

Attenuation:



Light Attenuation

� Adding constant factor k to denominator for better 
control

� Quadratic attenuation: k*(p-v)2

� Most computationally expensive, most physically correct

� Linear attenuation: k*(p-v)

� Less expensive, less accurate

� Constant attenuation: k

� Fastest computation, least accurate
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Lecture Overview

� Light Sources

� Directional Lights

� Point Lights

� Spot Lights
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� Like point light, but intensity depends on direction

Parameters

� Position: location of light source

� Cone direction d: center axis of light source

� Intensity falloff:

� Beam width (cone angle ����)

� The way the light tapers off at the edges of the beam 
(cosine exponent f)

Spotlights

47



Spotlights

Light source

Receiving surface
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Scan conversion,

visibility

Scene data

Image

• Place object in 3D space

• Map triangles to 2D

• Draw triangles

– Per pixel shading

• Determine colors of vertices

– Per vertex shading
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Vertex Shader
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#version 150

uniform mat4 camera;
uniform mat4 model;

in vec3 vert;
in vec2 vertTexCoord;
in vec3 vertNormal;

out vec3 fragVert;
out vec2 fragTexCoord;
out vec3 fragNormal;

void main() 
{

// Pass some variables to the fragment shader
fragTexCoord = vertTexCoord;
fragNormal = vertNormal;
fragVert = vert;

// Apply all matrix transformations to vert
gl_Position = camera * model * vec4(vert, 1);

}

Source: Tom Dallling’s OpenGL Tutorial



Fragment Shader for Diffuse Reflection
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#version 150

uniform mat4 model;
uniform sampler2D tex;

uniform struct Light 
{

vec4 position; // if w component=0 it’s directional
vec3 intensities; // a.k.a the color of the light
float attenuation; // only needed for point and spotlights
float ambientCoefficient;
float coneAngle;  // only needed for spotlights
vec3 coneDirection; // only needed for spotlights
float exponent;  // cosine exponent for how light tapers off

} light;

in vec2 fragTexCoord;
in vec3 fragNormal;
in vec3 fragVert;

out vec4 finalColor;

Source: Tom Dallling’s OpenGL Tutorial



Fragment Shader Part 2
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void main() 
{

// calculate normal in world coordinates
mat3 normalMatrix = transpose(inverse(mat3(model)));
vec3 normal = normalize(normalMatrix * fragNormal);

// calculate the location of this fragment (pixel) in world coordinates
vec3 fragPosition = vec3(model * vec4(fragVert, 1));

// calculate the vector from this pixels surface to the light source
vec3 surfaceToLight = light.position - fragPosition;

// calculate the cosine of the angle of incidence
float brightness = dot(normal, surfaceToLight) / (length(surfaceToLight) * length(normal));
brightness = clamp(brightness, 0, 1);

// calculate final color of the pixel, based on:
// 1. The angle of incidence: brightness
// 2. The color/intensities of the light: light.intensities
// 3. The texture and texture coord: texture(tex, fragTexCoord)
vec4 surfaceColor = texture(tex, fragTexCoord);
finalColor = vec4(brightness * light.intensities * surfaceColor.rgb, surfaceColor.a);

}

Source: Tom Dallling’s OpenGL Tutorial



Lighting with GLSL

� Tutorial for diffuse lighting with a point light

� http://www.tomdalling.com/blog/modern-opengl/06-diffuse-
point-lighting/
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