CSE 167:
 Introduction to Computer Graphics Lecture \#13: Bezier Surfaces

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2013

Announcements

- Homework assignment \#6 due Friday at I:30pm
- Last day for late submissions assignment \#5
- Next Monday discussion: midterm \#2
- Next Thursday: midterm \#2

Overview

- Piecewise Bezier curves
- Bezier surfaces

Global Parameterization

- Given N curve segments $\mathbf{x}_{0}(t), \mathbf{x}_{l}(t), \ldots, \mathbf{x}_{N-l}(t)$
- Each is parameterized for t from 0 to I
- Define a piecewise curve
- Global parameter u from 0 to N

$$
\begin{aligned}
& \mathbf{x}(u)=\left\{\begin{array}{lc}
\mathbf{x}_{0}(u), & 0 \leq u \leq 1 \\
\mathbf{x}_{1}(u-1), & 1 \leq u \leq 2 \\
\vdots & \vdots \\
\mathbf{x}_{N-1}(u-(N-1)), & N-1 \leq u \leq N
\end{array}\right. \\
& \mathbf{x}(u)=\mathbf{x}_{i}(u-i), \text { where } i=\lfloor u\rfloor
\end{aligned}\left(\text { and } \mathbf{x}(N)=\mathbf{x}_{N-1}(1)\right) \text {) }
$$

Alternate: solution u also goes from 0 to 1

$$
\mathbf{x}(u)=\mathbf{x}_{i}(N u-i), \text { where } i=\lfloor N u\rfloor
$$

Piecewise-Linear Curve

- Given $\mathrm{N}+1$ points $\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{N}$
- Define curve

$$
\begin{aligned}
\mathbf{x}(u) & =\operatorname{Lerp}\left(u-i, \mathbf{p}_{i}, \mathbf{p}_{i+1}\right), & & i \leq u \leq i+1 \\
& =(1-u+i) \mathbf{p}_{i}+(u-i) \mathbf{p}_{i+1}, & & i=\lfloor u\rfloor
\end{aligned}
$$

- $\mathrm{N}+1$ points define N linear segments
- $\mathbf{x}(i)=\mathbf{p}_{i}$
- C^{0} continuous by construction
${ }^{\wedge} \mathrm{C}^{\mathrm{l}}$ at \mathbf{p}_{i} when $\mathbf{p}_{i}-\mathbf{p}_{i-l}=\mathbf{p}_{i+l}-\mathbf{p}_{i}$

Piecewise Bézier curve

- Given $3 N+1$ points $\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{3 N}$
- Define N Bézier segments:

$$
\begin{aligned}
& \mathbf{x}_{0}(t)=B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}+B_{2}(t) \mathbf{p}_{2}+B_{3}(t) \mathbf{p}_{3} \\
& \mathbf{x}_{1}(t)=B_{0}(t) \mathbf{p}_{3}+B_{1}(t) \mathbf{p}_{4}+B_{2}(t) \mathbf{p}_{5}+B_{3}(t) \mathbf{p}_{6} \\
& \vdots \\
& \mathbf{x}_{N-1}(t)=B_{0}(t) \mathbf{p}_{3 N-3}+B_{1}(t) \mathbf{p}_{3 N-2}+B_{2}(t) \mathbf{p}_{3 N-1}+B_{3}(t) \mathbf{p}_{3 N}
\end{aligned}
$$

Piecewise Bézier Curve

- Parameter in $0<=u<=3 N$

$$
\mathbf{x}(u)=\left\{\begin{array}{lc}
\mathbf{x}_{0}\left(\frac{1}{3} u\right), & 0 \leq u \leq 3 \\
\mathbf{x}_{1}\left(\frac{1}{3} u-1\right), & 3 \leq u \leq 6 \\
\vdots & \vdots \\
\mathbf{x}_{N-1}\left(\frac{1}{3} u-(N-1)\right), & 3 N-3 \leq u \leq 3 N
\end{array}\right.
$$

$$
\mathbf{x}(u)=\mathbf{x}_{i}\left(\frac{1}{3} u-i\right), \text { where } i=\left\lfloor\frac{1}{3} u\right\rfloor
$$

Piecewise Bézier Curve

- $3 N+1$ points define N Bézier segments
- $\mathbf{x}(3 \mathrm{i})=\mathbf{p}_{3 \mathrm{i}}$
- C_{0} continuous by construction
- C_{1} continuous at $\mathbf{p}_{3 \mathrm{i}}$ when $\mathbf{p}_{3 \mathrm{i}}-\mathbf{p}_{3 \mathrm{i}-1}=\mathbf{p}_{3 \mathrm{i}+1}-\mathbf{p}_{3 \mathrm{i}}$
- C_{2} is harder to achieve

C_{1} discontinuous
C_{1} continuous

Piecewise Bézier Curves

- Used often in 2D drawing programs
- Inconveniences
- Must have 4 or 7 or 10 or 13 or ... (I plus a multiple of 3) control points
- Some points interpolate, others approximate
- Need to impose constraints on control points to obtain C^{1} continuity
- C_{2} continuity more difficult
- Solutions
" User interface using "Bézier handles"
- Generalization to B-splines or NURBS

Bézier Handles

- Segment end points (interpolating) presented as curve control points
- Midpoints (approximating points) presented as "handles"
- Can have option to enforce C_{1} continuity

Adobe Illustrator

Piecewise Bézier Curve

- $3 N+1$ points define N Bézier segments
- $\mathbf{x}(3 \mathrm{i})=\mathbf{p}_{3 \mathrm{i}}$
- C_{0} continuous by construction
- C_{1} continuous at $\mathbf{p}_{3 \mathrm{i}}$ when $\mathbf{p}_{3 \mathrm{i}}-\mathbf{p}_{3 \mathrm{i}-1}=\mathbf{p}_{3 \mathrm{i}+1}-\mathbf{p}_{3 \mathrm{i}}$
- C_{2} is harder to achieve

C_{1} discontinuous
C_{1} continuous

Rational Curves

- Weight causes point to "pull" more (or less)
- Can model circles with proper points and weights,
- Below: rational quadratic Bézier curve (three control points)

B-Splines

- B as in Basis-Splines
- Basis is blending function
- Difference to Bézier blending function:
- B-spline blending function can be zero outside a particular range (limits scope over which a control point has influence)
- B-Spline is defined by control points and range in which each control point is active.

NURBS

- Non Uniform Rational B-Splines
- Generalization of Bézier curves
- Non uniform:
- Combine B-Splines (limited scope of control points) and Rational Curves (weighted control points)
- Can exactly model conic sections (circles, ellipses)
- OpenGL support: see gluNurbsCurve
- http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2s lindex.html
- http://mathworld.wolfram.com/NURBSCurve.html

Lecture Overview

- Bi-linear patch
- Bi-cubic Bézier patch

Curved Surfaces

Curves

- Described by a ID series of control points
- A function $\mathbf{x}(t)$
- Segments joined together to form a longer curve

Surfaces

- Described by a 2D mesh of control points
- Parameters have two dimensions (two dimensional parameter domain)
- A function $\mathbf{x}(u, v)$
- Patches joined together to form a bigger surface

Parametric Surface Patch

- $\mathbf{x}(u, v)$ describes a point in space for any given (u, v) pair
- u, v each range from 0 to I

2D parameter domain

Parametric Surface Patch

- $\mathbf{x}(u, v)$ describes a point in space for any given (u, v) pair

। u, v each range from 0 to I

- Parametric curves

2D parameter domain

- For fixed u_{0}, have a v curve $\mathbf{x}\left(u_{0}, v\right)$
- For fixed v_{0}, have a u curve $\mathbf{x}\left(u, v_{0}\right)$
- For any point on the surface, there are a pair of parametric curves through that point

Tangents

- The tangent to a parametric curve is also tangent to the surface
- For any point on the surface, there are a pair of (parametric) tangent vectors
- Note: these vectors are not necessarily perpendicular to each other

Tangents

- Notation:
- The tangent along a u curve, AKA the tangent in the u direction, is written as:

$$
\frac{\partial \mathbf{x}}{\partial u}(u, v) \text { or } \frac{\partial}{\partial u} \mathbf{x}(u, v) \text { or } \mathbf{x}_{u}(u, v)
$$

- The tangent along a v curve, AKA the tangent in the v direction, is written as:

$$
\frac{\partial \mathbf{x}}{\partial v}(u, v) \text { or } \frac{\partial}{\partial v} \mathbf{x}(u, v) \text { or } \mathbf{x}_{v}(u, v)
$$

- Note that each of these is a vector-valued function:
- At each point $\mathbf{x}(u, v)$ on the surface, we have tangent vectors $\frac{\partial}{\partial u} \mathbf{x}(u, v)$ and $\frac{\partial}{\partial v} \mathbf{x}(u, v)$

Surface Normal

- Normal is cross product of the two tangent vectors
, Order matters!

$$
\overrightarrow{\mathbf{n}}(u, v)=\frac{\partial \mathbf{x}}{\partial u}(u, v) \times \frac{\partial \mathbf{x}}{\partial v}(u, v)
$$

Typically we are interested in the unit normal, so we need to normalize

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}^{*}(u, v)=\frac{\partial \mathbf{x}}{\partial u}(u, v) \times \frac{\partial \mathbf{x}}{\partial v}(u, v) \\
& \overrightarrow{\mathbf{n}}(u, v)=\frac{\overrightarrow{\mathbf{n}}^{*}(u, v)}{\mid \overrightarrow{\mathbf{n}}^{*}(u, v)}
\end{aligned}
$$

Bilinear Patch

- Control mesh with four points $\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$
- Compute $\mathbf{x}(u, v)$ using a two-step construction scheme

Bilinear Patch (Step 1)

- For a given value of u, evaluate the linear curves on the two u direction edges
- Use the same value u for both:

Bilinear Patch (Step 2)

- Consider that $\mathbf{q}_{0}, \mathbf{q}_{1}$ define a line segment
- Evaluate it using v to get \mathbf{x}

$$
\mathbf{x}=\operatorname{Lerp}\left(v, \mathbf{q}_{0}, \mathbf{q}_{1}\right)
$$

Bilinear Patch

- Combining the steps, we get the full formula

$$
\mathbf{x}(u, v)=\operatorname{Lerp}\left(v, \operatorname{Lerp}\left(u, \mathbf{p}_{0}, \mathbf{p}_{1}\right), \operatorname{Lerp}\left(u, \mathbf{p}_{2}, \mathbf{p}_{3}\right)\right)
$$

Bilinear Patch

- Try the other order
- Evaluate first in the v direction

$$
\mathbf{r}_{0}=\operatorname{Lerp}\left(v, \mathbf{p}_{0}, \mathbf{p}_{2}\right) \quad \mathbf{r}_{1}=\operatorname{Lerp}\left(v, \mathbf{p}_{1}, \mathbf{p}_{3}\right)
$$

Bilinear Patch

- Consider that $\mathbf{r}_{0}, \mathbf{r}_{1}$ define a line segment
- Evaluate it using u to get \mathbf{x}

$$
\mathbf{x}=\operatorname{Lerp}\left(u, \mathbf{r}_{0}, \mathbf{r}_{1}\right)
$$

Bilinear Patch

- The full formula for the v direction first:

$$
\mathbf{x}(u, v)=\operatorname{Lerp}\left(u, \operatorname{Lerp}\left(v, \mathbf{p}_{0}, \mathbf{p}_{2}\right), \operatorname{Lerp}\left(v, \mathbf{p}_{1}, \mathbf{p}_{3}\right)\right)
$$

Bilinear Patch

- Patch geometry is independent of the order of u and v

$$
\begin{aligned}
& \mathbf{x}(u, v)=\operatorname{Lerp}\left(v, \operatorname{Lerp}\left(u, \mathbf{p}_{0}, \mathbf{p}_{1}\right), \operatorname{Lerp}\left(u, \mathbf{p}_{2}, \mathbf{p}_{3}\right)\right) \\
& \mathbf{x}(u, v)=\operatorname{Lerp}\left(u, \operatorname{Lerp}\left(v, \mathbf{p}_{0}, \mathbf{p}_{2}\right), \operatorname{Lerp}\left(v, \mathbf{p}_{1}, \mathbf{p}_{3}\right)\right)
\end{aligned}
$$

Bilinear Patch

- Visualization

Bilinear Patches

- Weighted sum of control points

$$
\mathbf{x}(u, v)=(1-u)(1-v) \mathbf{p}_{0}+u(1-v) \mathbf{p}_{1}+(1-u) v \mathbf{p}_{2}+u v \mathbf{p}_{3}
$$

- Bilinear polynomial

$$
\mathbf{x}(u, v)=\left(\mathbf{p}_{0}-\mathbf{p}_{1}-\mathbf{p}_{2}+\mathbf{p}_{3}\right) u v+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) u+\left(\mathbf{p}_{2}-\mathbf{p}_{0}\right) v+\mathbf{p}_{0}
$$

- Matrix form

$$
x(u, v)=\left[\begin{array}{ll}
1-u & u
\end{array}\right]\left[\begin{array}{ll}
p_{0} & p_{2} \\
p_{1} & p_{3}
\end{array}\right]\left[\begin{array}{c}
1-v \\
v
\end{array}\right]
$$

Properties

- Interpolates the control points
- The boundaries are straight line segments
- If all 4 points of the control mesh are co-planar, the patch is flat
- If the points are not co-planar, we get a curved surface
- saddle shape (hyperbolic paraboloid)
- The parametric curves are all straight line segments!
- a (doubly) ruled surface: has (two) straight lines through every point

- Not terribly useful as a modeling primitive

Lecture Overview

- Bi-linear patch
- Bi-cubic Bézier patch

Bicubic Bézier patch

- Grid of 4×4 control points, \mathbf{p}_{0} through \mathbf{p}_{15}
- Four rows of control points define Bézier curves along u $\mathbf{p}_{\mathbf{0}}, \mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{3} ; \mathbf{p}_{4}, \mathbf{p}_{5}, \mathbf{p}_{6}, \mathbf{p}_{7} ; \mathbf{p}_{\mathbf{8}}, \mathbf{p}_{9}, \mathbf{p}_{\mathbf{1 0}}, \mathbf{p}_{11} ; \mathbf{p}_{\mathbf{1 2}}, \mathbf{p}_{\mathbf{1 3}}, \mathbf{p}_{\mathbf{1 4}}, \mathbf{p}_{15}$
- Four columns define Bézier curves along v

$$
\mathbf{p}_{0}, \mathbf{p}_{4}, \mathbf{p}_{8}, \mathbf{p}_{12} ; \mathbf{p}_{1}, \mathbf{p}_{6}, \mathbf{p}_{9}, \mathbf{p}_{13} ; \mathbf{p}_{2}, \mathbf{p}_{6}, \mathbf{p}_{10}, \mathbf{p}_{14} ; \mathbf{p}_{3}, \mathbf{p}_{7}, \mathbf{p}_{11}, \mathbf{p}_{15}
$$

Bézier Patch (Step 1)

- Evaluate four u-direction Bézier curves at scalar value u [0..1]
- Get points $\mathbf{q}_{0} \ldots \mathbf{q}_{3} \quad \mathbf{q}_{0}=\operatorname{Bez}\left(u, \mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right)$

$$
\begin{aligned}
& \mathbf{q}_{1}=\operatorname{Bez}\left(u, \mathbf{p}_{4}, \mathbf{p}_{5}, \mathbf{p}_{6}, \mathbf{p}_{7}\right) \\
& \mathbf{q}_{2}=\operatorname{Bez}\left(u, \mathbf{p}_{8}, \mathbf{p}_{9}, \mathbf{p}_{10}, \mathbf{p}_{11}\right) \\
& \mathbf{q}_{3}=\operatorname{Bez}\left(u, \mathbf{p}_{12}, \mathbf{p}_{13}, \mathbf{p}_{14}, \mathbf{p}_{15}\right)
\end{aligned}
$$

Bézier Patch (Step 2)

- Points $\mathbf{q}_{0} \ldots \mathbf{q}_{3}$ define a Bézier curve
- Evaluate it at $v[0 . .1]$

$$
\mathbf{x}(u, v)=\operatorname{Bez}\left(v, \mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right)
$$

Bézier Patch

- Same result in either order (evaluate u before v or vice versa)

Bézier Patch: Matrix Form

$$
\begin{aligned}
\mathbf{U}=\left[\begin{array}{c}
u^{3} \\
u^{2} \\
u \\
1
\end{array}\right] \quad \mathbf{V}=\left[\begin{array}{c}
v^{3} \\
v^{2} \\
v \\
1
\end{array}\right] \quad \mathbf{B}_{B e z}=\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]=\mathbf{B}_{B e z}^{T} \\
\mathbf{C}_{x}=\mathbf{B}_{B e z}^{T} \mathbf{G}_{x} \mathbf{B}_{B e z} \\
\mathbf{C}_{y}=\mathbf{B}_{B e z}^{T} \mathbf{G}_{y} \mathbf{B}_{B e z} \\
\mathbf{C}_{z}=\mathbf{B}_{B e z}^{T} \mathbf{G}_{z} \mathbf{B}_{B e z}
\end{aligned} \quad \mathbf{G}_{x}=\left[\begin{array}{cccc}
p_{0 x} & p_{1 x} & p_{2 x} & p_{3 x} \\
p_{4 x} & p_{5 x} & p_{6 x} & p_{7 x} \\
p_{8 x} & p_{9 x} & p_{10 x} & p_{11 x} \\
p_{12 x} & p_{13 x} & p_{14 x} & p_{15 x}
\end{array}\right], \mathbf{G}_{y}=\cdots, \mathbf{G}_{z}=\cdots,
$$

$$
\mathbf{x}(u, v)=\left[\begin{array}{c}
\mathbf{V}^{T} \mathbf{C}_{x} \mathbf{U} \\
\mathbf{V}^{T} \mathbf{C}_{y} \mathbf{U} \\
\mathbf{V}^{T} \mathbf{C}_{z} \mathbf{U}
\end{array}\right]
$$

Bézier Patch: Matrix Form

- \mathbf{C}_{x} stores the coefficients of the bicubic equation for x
- \mathbf{C}_{y} stores the coefficients of the bicubic equation for y
- $\mathbf{C}_{\mathbf{z}}$ stores the coefficients of the bicubic equation for z
- \mathbf{G}_{x} stores the geometry (x components of the control points)
- \mathbf{G}_{y} stores the geometry (y components of the control points)
- $\mathbf{G}_{\mathbf{z}}$ stores the geometry (z components of the control points)
- $\mathbf{B}_{\mathrm{Bez}}$ is the basis matrix (Bézier basis)
v \mathbf{U} and \mathbf{V} are the vectors formed from the powers of u and v
- Compact notation
- Leads to efficient method of computation
- Can take advantage of hardware support for 4×4 matrix arithmetic

Properties

- Convex hull: any point on the surface will fall within the convex hull of the control points
- Interpolates 4 corner points
- Approximates other 12 points, which act as "handles"
- The boundaries of the patch are the Bézier curves defined by the points on the mesh edges
- The parametric curves are all Bézier curves

Tangents of a Bézier patch

- Remember parametric curves $\mathbf{x}\left(u, v_{0}\right), \mathbf{x}\left(u_{0}, v\right)$ where v_{0}, u_{0} is fixed
- Tangents to surface $=$ tangents to parametric curves
- Tangents are partial derivatives of $\mathbf{x}(u, v)$
- Normal is cross product of the tangents

Tangents of a Bézier patch

$$
\begin{array}{cl}
\mathbf{q}_{\mathbf{0}}=\operatorname{Bez}\left(u, \mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right) & \mathbf{r}_{\mathbf{0}}=\operatorname{Bez}\left(v, \mathbf{p}_{0}, \mathbf{p}_{4}, \mathbf{p}_{8}, \mathbf{p}_{12}\right) \\
\mathbf{q}_{1}=\operatorname{Bez}\left(u, \mathbf{p}_{4}, \mathbf{p}_{5}, \mathbf{p}_{6}, \mathbf{p}_{7}\right) & \mathbf{r}_{1}=\operatorname{Bez}\left(v, \mathbf{p}_{1}, \mathbf{p}_{5}, \mathbf{p}_{9}, \mathbf{p}_{13}\right) \\
\mathbf{q}_{2}=\operatorname{Bez}\left(u, \mathbf{p}_{8}, \mathbf{p}_{9}, \mathbf{p}_{10}, \mathbf{p}_{11}\right) & \mathbf{r}_{2}=\operatorname{Bez}\left(v, \mathbf{p}_{2}, \mathbf{p}_{6}, \mathbf{p}_{10}, \mathbf{p}_{14}\right) \\
\mathbf{q}_{3}=\operatorname{Bez}\left(u, \mathbf{p}_{12}, \mathbf{p}_{13}, \mathbf{p}_{14}, \mathbf{p}_{15}\right) & \mathbf{r}_{3}=\operatorname{Bez}\left(v, \mathbf{p}_{3}, \mathbf{p}_{7}, \mathbf{p}_{11}, \mathbf{p}_{15}\right) \\
\frac{\partial \mathbf{x}}{\partial v}(u, v)=\operatorname{Bez}\left(v, \mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right) & \frac{\partial \mathbf{x}}{\partial u}(u, v)=\operatorname{Bez}\left(u, \mathbf{r}_{0}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)
\end{array}
$$

Tessellating a Bézier patch

- Uniform tessellation is most straightforward
- Evaluate points on a grid of u, v coordinates
* Compute tangents at each point, take cross product to get per-vertex normal
- Draw triangle strips with gIBegin(GL_TRIANGLE_STRIP)

- Adaptive tessellation/recursive subdivision
- Potential for "cracks" if patches on opposite sides of an edge divide differently
- Tricky to get right, but can be done

Piecewise Bézier Surface

- Lay out grid of adjacent meshes of control points
- For C^{0} continuity, must share points on the edge
- Each edge of a Bézier patch is a Bézier curve based only on the edge mesh points
- So if adjacent meshes share edge points, the patches will line up exactly
- But we have a crease...

Grid of control points

Piecewise Bézier surface

C^{1} Continuity

- We want the parametric curves that cross each edge to have C^{1} continuity
- So the handles must be equal-and-opposite across the edge:

http://www.spiritone.com/~english/cyclopedia/patches.html

Modeling With Bézier Patches

- Original Utah teapot, from Martin Newell's PhD thesis, consisted of 28 Bézier patches.
- The original had no rim for the lid and no bottom
- Later, four more patches were added to
 create a bottom, bringing the total to 32
- The data set was used by a number of people, including graphics guru Jim Blinn. In a demonstration of a system of his he scaled the teapot by .75 , creating
 a stubbier teapot. He found it more pleasing to the eye, and it was this scaled version that became the highly popular dataset used today.

