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Announcements

» Homework assignment #6 due Friday at |:30pm

Last day for late submissions assighment #5
» Next Monday discussion: midterm #2
» Next Thursday: midterm #2



Overview

» Piecewise Bezier curves

» Bezier surfaces



Global Parameterization

» Given N curve segments X(?), X,(?), ..., Xy_;(?)
» Each is parameterized for ¢ from O to |

» Define a piecewise curve
Global parameter u from 0 to N

(x, (1), 0<uc<l

—-1), ISu<?2

Xy (u—-(N-1)), N-1<u<N

x(u)=x,(u—i), wherei=|u| (andx(N)=x, (1))

» Alternate: solution u also goes from 0O to |
x(u) = x,(Nu—i), where i=| Nu |



Piecewise-Linear Curve

» Given N+1 points py, Py, «-«s Py

» Define curve
X(u)= Lerp(u—1,p,,P,.,) iSu<i+l

=(—u+ip,+w—ip;,,, i=|u]

X(2.9)

x(1.5)

Po Ps

» N+1 points define N linear segments

> X(1)=Pp;
» COcontinuous by construction

» Clat p, when p-p,.; = P, P;



Piecewise Bézier curve
e Given 3N +1 points p,,P,».--> Py
e Define N Bézier segments:
X,(t) = B,(t)p, + B,(1)p, + B,(1)p, + B;(1)p;
X,(t)=B,(1)p, + B,(1)p, + B,(1)ps + B;(1)P;

XN_1(t) — B()(t)p3N—3 + Bl(t)p3N—2 + Bz(t)p3N—1 + B3(t)p3N
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Piecewise Beézier Curve

» Parameter in O<=u<=3N
X, (3u), O0<u<3

X(u):ﬁ(l(gu—l), 3@36

Xy Gu—(N-1)), 3N-3<u<3N

x(u)=x,(lu—i), wherei=|1u|

x(8.75)
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Piecewise Beézier Curve

3N+1 points define N Beézier segments
X(3i)=p3i -”"./ﬁ.‘“\.\__ /,/"

C, continuous by construction

C, continuous at p3; when ps; - P = P3iy; - P3;
C, is harder to achieve

Py P,

C, discontinuous C, continuous



Piecewise Bezier Curves

» Used often in 2D drawing programs

» Inconveniences

Must have 4 or 7 or 10 or I3 or ... (I plus a multiple of 3)
control points

Some points interpolate, others approximate

Need to impose constraints on control points to obtain C!
continuity

C, continuity more difficult
» Solutions

User interface using “Bézier handles”
Generalization to B-splines or NURBS



Bézier Handles

Flo Edt Object Type Select Fiter Effect View Window Heb

» Segment end points  [l- - oo o
(interpolating)
presented as curve
control points

» Midpoints

(approximating / |
points) presented as = p— Y,
“handles” pr— N
» Can have optionto  [5-"""
enforce C, continuity [
s v s o

Adobe Illustrator
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Piecewise Beézier Curve

3N+1 points define N Beézier segments
X(3i)=p3i -”"./ﬁ.‘“\.\__ /,/"

C, continuous by construction

C, continuous at p3; when ps; - P = P3iy; - P3;
C, is harder to achieve

Py P,

C, discontinuous C, continuous
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Rational Curves

» Weight causes point to “pull” more (or less)
» Can model circles with proper points and weights,

» Below: rational quadratic Bézier curve (three control points)

W1=2'0 w1=1.0 wl=0.5
W1=,0'0 W1=,'0' 5

_
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B-Splines

» B as in Basis-Splines
» Basis is blending function
» Difference to Bézier blending function:

B-spline blending function can be zero outside a particular
range (limits scope over which a control point has influence)

» B-Spline is defined by control points and range in which
each control point is active.
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NURBS

» Non Uniform Rational B-Splines
» Generalization of Bézier curves
» Non uniform:

» Combine B-Splines (limited scope of control points) and
Rational Curves (weighted control points)

» Can exactly model conic sections (circles, ellipses)
» OpenGL support: see gluNurbsCurve
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Lecture Overview

» Bi-linear patch
» Bi-cubic Bézier patch

15



Curved Surfaces

Curves

» Described by a ID series of control points

» A function x(?)

» Segments joined together to form a longer curve

Surfaces
» Described by a 2D mesh of control points

» Parameters have two dimensions (two dimensional parameter
domain)

» A function x(u,V)
» Patches joined together to form a bigger surface
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Parametric Surface Patch

» X(u,v) describes a point in space for any given (u,v) pair
u,v each range from 0O to |

* 0

1
u

2D parameter domain
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Parametric Surface Patch

» X(u,v) describes a point in space for any given (u,v) pair
u,v each range from 0O to |

. | (X A ),
G x(0.4,v) )
, ey e u—
x 0 1
u
» Parametric curves 2D parameter domain

For fixed u,, have a v curve x(u,,v)
For fixed v,, have a u curve x(u,v,)

For any point on the surface, there are a pair of parametric
curves through that point
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Tangents

» The tangent to a parametric curve is also tangent to the
surface

» For any point on the surface, there are a pair of (parametric)
tangent vectors

» Note: these vectors are not necessarily perpendicular to each
other
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Tangents

e Notation:
e The tangent along a u curve, AKA the tangent in the u direction, is written as:
—X(u,v) or a—aux(u,v) or x,(u,v)
du
e The tangent along a v curve, AKA the tangent in the v direction, is written as:

X
—(u,v)or a%X(u,v) or x (u,v)

ov

¢ Note that each of these is a vector-valued function:
e At each point x(u,v) on the surface, we have tangent vectors < x(u,v) and 2 x(u,v)
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Surface Normal

» Normal is cross
product of the two
tangent vectors

» Order matters!

n(u,v)= —X(u,v) X a—X(u,v)

ou dv

Typically we are interested in the unit normal, so we need to normalize

i (u,v)= —X(u,v) X %(u,v)

ou ov

- B n (u,v)
n(u,v) = i’ (i, )
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Bilinear Patch

» Control mesh with four points py, Py P2 P3

» Compute X(u,v) using a two-step construction scheme
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Bilinear Patch (Step 1)

» For a given value of u, evaluate the linear curves on the two u-
direction edges

» Use the same value u for both:

qo=Lerp(u,py,p1) q,=Lerp(u,p,,ps)

Py, q,
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Bilinear Patch (Step 2)

» Consider that q,, ¢, define a line segment

» Evaluate it using v to get X

X = Lerp(v,q,.q,)

Py, q,
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Bilinear Patch

» Combining the steps, we get the full formula

X(u,v) = Lerp(v, Lerp(u,p,,p,), Lerp(u,p,,p;))

Py, q,
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Bilinear Patch

» Try the other order

» Evaluate first in the v direction

r, = Lerp(v,p,.p,) T, = Lerp(v,p,.p,)
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Bilinear Patch

» Consider that r, r; define a line segment

» Evaluate it using u to get x

X = Lerp(u,r,,1,)
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Bilinear Patch

» The full formula for the v direction first:

X(u,v)= Lerp(u, Lerp(v,p,,P, ), Lerp(v,p,, P3))
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Bilinear Patch

» Patch geometry is independent of the order of u and v

X(u,v)= Lerp(v, Lerp(u,p,,p,), Lerp(u,p,,p;))
X(u,v) = Lerp(u, Lerp(v,p,, P, ), Lerp(v,p,,P;))
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Bilinear Patch

» Visualization
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Bilinear Patches

» Weighted sum of control points
x(u,v) = (1-u)(1=v)po+u(l—v)p1+ (1 —u)vps+uvp;
» Bilinear polynomial

x(u,v) = (po—pP1—P2+P3)uv+(p1—pPo)u+(pP2—Po)v+Po
» Matrix form

x(u,v):[l—u u]{po pz}{l—v}
P Ps 4
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Properties

Interpolates the control points
The boundaries are straight line segments
If all 4 points of the control mesh are co-planar, the patch is flat

v v Vv Vv

If the points are not co-planar, we get a curved surface
saddle shape (hyperbolic paraboloid)
» The parametric curves are all straight line segments!
a (doubly) ruled surface: has (two) straight lines through every point

» Not terribly useful as a modeling primitive
32



Lecture Overview

» Bi-linear patch
» Bi-cubic Bézier patch
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Bicubic Bézier patch

» Grid of 4x4 control points, p, through p:

» Four rows of control points define Bézier curves along u

PosP15P2:P3; P4sP55P6P75 PssP9sP10sP115 P12:P13:P145P15
» Four columns define Bézier curves along v

PosP4sPgsP12; P15sPesP9sP13> P25P6sP10sP145 P35P75P115P15
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Bézier Patch (Step 1)

» Evaluate four u-direction Bézier curves at scalar value u [0..1]

» Get points do  qs q, = Bez(u,p,,p,,P,,P;)
q, = Bez(u,p,,Ps.Pg-P)
q, = Bez(u,pg, Py, P 10> Py1)
q; = Bez(u,p,5, P13 P14>Py5)
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Bézier Patch (Step 2)

» Points q, q; define a Bézier curve

» Evaluateitatv [0..1]
X(ua V) — BeZ(Va q07q17q27q3)
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Bézier Patch

» Same result in either order (evaluate u before v or vice versa)

q, = Bez(u,p,,p,.P,,P;) r, = Bez(v.py, P, PssP1y)
q, = Bez(u,p,,Ps,Ps>P;) I, = Bez(v,p,,Ps, Py P;3)
q, = Bez(u,pg, Py, Po-P11) & r, = Bez(v,p,.P¢Pio-Pis)
q; = Bez(U, PPz PrasPys) r; = Bez(v,p;,P,, P15 P)s)
x(u,v) = Bez(v,q,,9,,9,,9;) X(u,v) = Bez(u,r,,r,,r,,1;)
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Bézier Patch: Matrix Form

_l/l3_ V3
l/l2 V2
U= V= B, =
u Vv
Cx = BgeszBBeZ
C = BzeZGyB Bes G, =
CZ — BzezGZBBeZ
V'CU
x(u,v)= VTCyU
ViCcU

38

D3«
Py
Prix
Pisx_




v Vv VvV VvV VvV VvV v V9

Bézier Patch: Matrix Form

C, stores the coefficients of the bicubic equation for x
C, stores the coefficients of the bicubic equation for y
C, stores the coefficients of the bicubic equation for z
G, stores the geometry (x components of the control points)
G, stores the geometry (y components of the control points)

y
G, stores the geometry (z components of the control points)

z
BBez
U and V are the vectors formed from the powers of u and v

is the basis matrix (Bézier basis)

Compact notation
Leads to efficient method of computation
Can take advantage of hardware support for 4x4 matrix arithmetic
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Properties

» Convex hull:any point on the surface will fall within the convex hull of the
control points

» Interpolates 4 corner points
» Approximates other |2 points, which act as “handles”

» The boundaries of the patch are the Bézier curves defined by the points on
the mesh edges

» The parametric curves are all Bézier curves




Tangents of a Bézier patch

» Remember parametric curves x(u,v), X(u,,v) Where v, u,is
fixed

» Tangents to surface = tangents to parametric curves
» Tangents are partial derivatives of x(u,v)

» Normal is cross product of the tangents
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Tangents of a Bézier patch

q, = Bez(u,py,P;>P,>P3) ry = Bez(v.py,Py>Ps:Pry)
q, = Bez(u,p,,Ps,Ps-P;) r, = Bez(v,p,Ps:PosPy3)
q, = Bez(u,pg, Py, Pio>P11) r, = Bez(v,P,,PssPios P1y)
q, = Bez(tt,p 1, P13 P1s>Pis) r, = Bez(v.ps,P7P115Pis)
3—):(%\/) = Bez’(v,q,,9,-9,-93) g—z(u,;;) = Be7'(u,r,,1,,1,,T;)
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Tessellating a Bézier patch

» Uniform tessellation is most straightforward
Evaluate points on a grid of u, v coordinates

Compute tangents at each point, take cross product to get per-vertex

normal
Draw triangle strips with glBegin(GL_TRIANGLE_STRIP)
e R
SSNSS
SN SIS SIS
! ™~ A .., ‘ 7 \
2 N,
o

» Adaptive tessellation/recursive subdivision

Potential for “cracks” if patches on opposite sides of an edge divide
differently

Tricky to get right, but can be done
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Piecewise Beézier Surface

» Lay out grid of adjacent meshes of control points
» For C° continuity, must share points on the edge

» Each edge of a Bézier patch is a Bézier curve based only on
the edge mesh points

» So if adjacent meshes share edge points, the patches will line
up exactly

» But we have a crease...




C! Continuity

» We want the parametric curves that cross each edge to
have C'! continuity

» So the handles must be equal-and-opposite across the edge:

http://www.spiritone.com/~english/cyclopedia/patches.html




Modeling With Bézier Patches

» Original Utah teapot, from Martin
Newell's PhD thesis, consisted of 28
Bézier patches.

» The original had no rim for the lid and
no bottom

» Later, four more patches were added to
create a bottom, bringing the total to

32
L L
» The data set was used by a numberof __ 7 = 7~ /7T —
le. includi hi : ' 1T\ A [T T
peopie, Including grapnics guru Jlm N/, 1 %, (T Tk T U\
. : N1 Y e
Blinn. In a2 demonstration of a system of VI I UM L 3 2.0 B A

his he scaled the teapot by .75, creating
a stubbier teapot. He found it more
pleasing to the eye, and it was this
scaled version that became the highly
popular dataset used today.

46 Source: http://www.holmes3d.net/graphics/teapot/



