
CSE 167:

Introduction to Computer Graphics

Lecture #10: Advanced Texture Mapping

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2020



Announcements

� Sunday, November 8th at 11:59pm:

� Homework Project 2 due

2



MIP Mapping



Aliasing

� What could cause this aliasing effect?

4



Aliasing

Sufficiently 

sampled,

no aliasing

Insufficiently 

sampled,

aliasing

High frequencies in the input data can appear as 

lower frequencies in the sampled signal

5

Image: Robert L. Cook



Antialiasing: Intuition

� Pixel may cover large area on triangle in camera space
� Corresponds to many texels in texture space
� Need to compute average

Texture spaceCamera spaceImage plane

Pixel area

Texels

6



Antialiasing Using Mip-Maps

� Averaging over texels is expensive

� Many texels as objects get smaller

� Large memory access and compuation cost

� Precompute filtered (averaged) textures

� Mip-maps

� Practical solution to aliasing problem

� Fast and simple

� Available in OpenGL, implemented in GPUs 

� Reasonable quality

7



Mipmaps

� MIP stands for multum in parvo = “much in little” (Williams 
1983)

Before rendering

� Pre-compute and store down scaled versions of textures

� Reduce resolution by factors of two successively

� Use high quality filtering (averaging) scheme

� Increases memory cost by 1/3

� 1/3 = ¼+1/16+1/64+…

� Width and height of texture should be powers of two (non-
power of two supported since OpenGL 2.0)

8



Mipmaps

� Example: resolutions 512x512, 256x256, 128x128, 64x64, 
32x32 pixels

“multum in parvo”
Level 0

Level 1

2

3
4

9



Mipmaps

� One texel in level 4 is the average of 44=256 texels in 
level 0

“multum in parvo”
Level 0

Level 1

2

3
4

10



Mipmaps

Level 0 Level 1 Level 2

Level 3 Level 411



Rendering With Mipmaps

� “Mipmapping”

� Interpolate texture coordinates of each pixel as without 
mipmapping

� Compute approximate size of pixel in texture space

� Look up color in nearest mipmap
� E.g., if pixel corresponds to 10x10 texels use mipmap level 3

� Use nearest neighbor or bilinear interpolation as before 

12



Mipmapping

Texture spaceCamera spaceImage plane

Pixel area

Texels

Mip-map level 0

Mip-map level 1

Mip-map level 2

Mip-map level 313



Nearest Mipmap, Nearest Neighbor

� Visible transition between mipmap levels

14



Nearest Mipmap, Bilinear

� Visible transition between mipmap levels

15



Trilinear Mipmapping

� Use two nearest mipmap levels

� E.g., if pixel corresponds to 10x10 texels, use mipmap levels 3 
(8x8) and 4 (16x16)

� 2-Step approach:

� Step 1: perform bilinear interpolation in both mip-maps

� Step 2: linearly interpolate between the results

� Requires access to 8 texels for each pixel

� Supported by hardware without performance penalty

16



Anisotropic Filtering

� Method of enhancing the image 
quality of textures on surfaces that 
are at oblique viewing angles

� Different degrees or ratios of 
anisotropic filtering can be applied

� The degree refers to the maximum 
ratio of anisotropy supported by the 
filtering process. For example, 4:1 
anisotropic filtering supports pre-
sampled textures up to four times 
wider than tall

17



More Info

� Mipmapping tutorial w/source code:
� http://www.videotutorialsrock.com/opengl_tutorial/mipmapping/text.php

18



Environment Mapping



More Realistic Illumination

� In the real world:
At each point in scene light arrives from all directions

� Not just from a few point light sources

�  Global Illumination is a solution, but computationally expensive

� Environment Maps

� Store “omni-directional” illumination as images

� Each pixel corresponds to light from a certain direction

� Sky boxes make for great environment maps

20



Capturing Environment Maps

� Environment map = surround panoramic 
image

� Creating 360 degrees panoramic images:

� 360 degree camera

� “light probe” image: take picture of mirror 
ball (e.g., silver Christmas ornament)

Light Probes by Paul Debevec

http://www.debevec.org/Probes/

21



Environment Maps as Light Sources

Simplifying Assumption

� Assume light captured by environment map is emitted 
from infinitely far away

� Environment map consists of directional light sources
� Value of environment map is defined for each direction, 

independent of position in scene

� Approach uses same environment map at each point in 
scene
Approximation!

22



Applications for Environment Maps

� Use environment map as “light source”

Global illumination with

pre-computed radiance transfer

[Sloan et al. 2002]

Reflection mapping

[Georg-Simon Ohm University of Applied Sciences]

23



Cubic Environment Maps

� Store incident light on six faces 
of a cube instead of on sphere

Spherical map Cube map
24



Cubic vs. Spherical Maps

� Advantages of cube maps:

� More even texel sample density causes less distortion, allowing 
for lower resolution maps

� Easier to dynamically generate cube maps for real-time 
simulated reflections

25



Bubble Demo

http://download.nvidia.com/downloads/nZone/demos/nvidia/Bubble.zip

26



Cubic Environment Maps

Cube map look-up

� Given: light direction (x,y,z)

� Largest coordinate component determines cube map face

� Dividing by magnitude of largest component yields 
coordinates within face

� In GLSL:

� Use (x,y,z) direction as texture coordinates to samplerCube

27



Reflection Mapping

� Simulates mirror reflection

� Computes reflection vector at each pixel

� Use reflection vector to look up cube map

� Rendering cube map itself is optional (application dependent)

Reflection mapping
28



Reflection Mapping in GLSL

Application Setup

� Load and bind a cube environment map
glBindTexture(GL_TEXTURE_CUBE_MAP, …);

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X,…);

glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X,…);

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y,…);

…

glEnable(GL_TEXTURE_CUBE_MAP);

29



Environment Mapping: Concept

30

Source: http://antongerdelan.net/opengl/cubemaps.html



Environment Mapping: Vertex Shader

31

#version 400

in vec3 vp; // positions from mesh

in vec3 vn; // normals from mesh

uniform mat4 P, V, M; // proj, view, model matrices

out vec3 pos_eye;

out vec3 n_eye;

void main() 

{

pos_eye = vec3(V * M * vec4(vp, 1.0));

n_eye = vec3(V * M * vec4(vn, 0.0));

gl_Position = P * V * M * vec4(vp, 1.0);

}



Environment Mapping: Fragment Shader
#version 400

in vec3 pos_eye;

in vec3 n_eye;

uniform samplerCube cube_texture;

uniform mat4 V; // view matrix

out vec4 frag_colour;

void main() 

{

// reflect ray around normal from eye to surface

vec3 incident_eye = normalize(pos_eye);

vec3 normal = normalize(n_eye);

vec3 reflected = reflect(incident_eye, normal);

// convert from eye to world space

reflected = vec3(inverse(V) * vec4(reflected, 0.0));

frag_colour = texture(cube_texture, reflected);

}

32



Environment Maps as Light Sources

� Covered so far: shading of a specular surface

 How do you compute shading of a diffuse surface?

33



Diffuse Irradiance Environment Map

� Given a scene with k directional lights, light directions d1..dk and intensities i1..ik,
illuminating a diffuse surface with normal n and color c

� Pixel intensity B is computed as:

� Cost of computing B proportional to number of texels in environment map!

�  Precomputation of diffuse reflection

� Observations:

� All surfaces with normal direction n will return the same value for the sum

� The sum is dependent on just the lights in the scene and the surface normal

� Precompute sum for any normal n and store result in a second environment map, 
indexed by surface normal

� Second environment map is called diffuse irradiance environment map

� Allows to illuminate objects with arbitrarily complex lighting environments with 
single texture lookup


=

⋅=

kj

jj indcB
..1

),0max(

34



Diffuse Irradiance Environment Map

� Two cubic environment maps:

� Reflection map

� Diffuse map

� Diffuse shading vs. shading w/diffuse map

Image source: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter10.html

35


