CSE 167:
Introduction to Computer Graphics
Lecture #14: Procedural Modeling

Juargen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2015

Announcements

» Project 6 due tomorrow
» Monday: Midterm discussion
» Next Thursday: Midterm #2

» Final project description released tomorrow evening

i = UCSD

Lecture Overview

» Procedural Modeling
Concepts
Algorithms

’ = UCSD

3D Modeling

» Creating 3D objects/scenes and defining their
appearance (texture, etc.)

» So far we created
Triangle meshes

Bezier patches

» Interactive modeling

Place vertices, control points manually

» For realistic scenes, need extremely complex models
containing millions or billions of primitives

» Modeling everything manually is extremely tedious

’ = UCSD

Alternatives

» Data-driven modeling

Scan model geometry
from real world examples

Use laser scanners or
similar devices

Use photographs as textures Photograph Rendering
Archives of 3D models [Levoy et al.]

Reader for PLY point file format:

» Procedural modeling
Construct 3D models and/or textures algorithmically

) = UCSD

Procedural Modeling

» Wide variety of techniques for
algorithmic model creation

» Used to create models
too complex (or tedious)
to build manually

Terrain, clouds

Plants, ecosystems
Buildings, cities [Deussen et al.]

» Usually defined by a small set of data, or rules, that describes
the overall properties of the model

Tree defined by branching properties and leaf shapes

» Model is constructed by an algorithm
Often includes randomness to add variety
E.g.,a single tree pattern can be used to model an entire forest

i = UCSD

Randomness

» Use some sort of randomness to make models more
interesting, natural, less uniform

» Pseudorandom number generation algorithms
Produce a sequence of (apparently) random numbers based
on some initial seed value
» Pseudorandom sequences are repeatable, as one can
always reset the sequence

E.g., if a tree is built using pseudorandom numbers, then the
entire tree can be rebuilt by resetting the seed value

If the seed value is changed, a different sequence of numbers
will be generated, resulting in a (slightly) different tree

' = UCSD

Recursion

» Repeatedly apply the same operation (set of
operations) to an object

» Generate self-similar objects: fractals

Obijects which look similar when viewed at different scales

» For example, the shape of a coastline may appear as a
jagged line on a map

As we zoom in, we see that there is more and more detail at
finer scales

We always see a jagged line no matter how close we look at
the coastline

i = UCSD

Lecture Overview

» Procedural Modeling
Concepts
Algorithms

’ = UCSD

Height Fields

» Landscapes are often constructed as height fields
» Regular grid on the ground plane
» Store a height value at each point

» Can store large terrain in memory
No need to store all grid coordinates: inherent connectivity
» Shape terrain by operations that modify the height at
each grid point
» Can generate height from grey scale values
Allows using image processing tools to create terrain height

° = UCSD

Midpoint Displacement Algorithm

» Random midpoint displacement algorithm (one-dimensional)

Start with single horizontal line segment.
Repeat for sufficiently large number of times

{

Repeat over each line segment in scene

{
Find midpoint of line segment.
Displace midpoint in Y by random amount.
Reduce range for random numbers.

}
}

» Similar for triangles, quadrilaterals

Step 0
Step 1
Step 2

Step 3

11

.

/ \ Result: Mountain Range

Source: http://gameprogrammer.com/fractal.html#mi@tL]CSD

Diamond Square Algorithm

» Begins with a 2D array of size 2" + |
» Four corner points must be set to initial values.

» Perform diamond and square steps alternatingly:

The diamond step: for each square in the array, set the midpoint of that square to be the average
of the four corner points plus a random value.

The square step: for each diamond in the array, set the midpoint of that diamond to be the

average of the four corner points plus a random value.

Points located on edges of the array will have only three adjacent values set rather than four: take their

average.

» At each iteration, the magnitude of the random value should be reduced.

12

O O
O O
QO O
O O
O O

Iritiddize corner values

&

O

O

O

©

O

Perfomdiamondstep

o -0
0
o
o
O—0-~

Performsguere ep

O

w L &
%

O

Performdiamond step

L]
L]
0]

o
;04

o + -0

—L—o‘—o

Fractals

» Fractal:
Fragmented geometric shape which can be
split into parts, each of which is (at least
approximately) a smaller size copy of the
whole

» Self-similarity

» Demo: Mandelbrot Set

From Wlklpedla

" = UCSD

Video
» 3D Mandelbrot Zoom

" = UCSD

Fractal Landscapes

» Add textures, material properties; use nice rendering
algorithm

» Example: Terragen Classic (free software)
http://www.planetside.co.uk/terragen/

[http://www.planetside.co.uk/gallery/f/tg09]

° = UCSD

L-Systems

» Developed by biologist Aristid Lindenmayer in 1968
to study growth patterns of algae

» Defined by grammar

G={V.5w, P}

V = alphabet, set of symbols that can be replaced (variables)
S = set of symbols that remain fixed (constants)

® = string of symbols defining initial state

P = production rules

» Stochastic L-system
If there is more than one production rule for a symbol,
randomly choose one

° = UCSD

Turtle Interpretation for L-Systems

» Origin: functional programming language Logo
Dialect of Lisp
Designed for education: drove a mechanical turtle as an output device

» Turtle interpretation of strings
State of turtle defined by (x, y, a) for position and heading

Turtle moves by step size d and angle increment 0

» Sample Grammar

F: move forward a step of length d

New turtle state: (X, y’, Q)

x'=x+dcosa

y=y+dsina

A line segment between points (x, y) and (x’, y’) is drawn.
+:Turn left by angle 8. Next state of turtle is (x, y, a+0)
Positive orientation of angles is counterclockwise.

—:Turn right by angle 0. Next state of turtle is (x, y, a-0)

v = UCSD

Example: Sierpinski Triangle
» Variables: A, B

Draw forward

» Constants: + , -
Turn left, right by 60 degrees

» Start: A
» Rules: (A—B-A-B), (B—A+B+A)

2 iterations 4 iterations

v
O4

v

v

Al A _
.e. £
& A L A

AL AL

6 iterations 9 iterations

” = UCSD

Example: Fern
» Variables: X, F

X: no drawing operation
F: move forward

» Constants: +, —
Turn left, right

» Start: X

» Rules: [Wikipedia]
(X — P-[[X]+X]+F[+FX]-X).(F — FF)

" = UCSD

Fractal Trees
» Recursive generation of trees in 3D

» Model trunk and branches as cylinders
» Change color from brown to green at certain level of recursion

Some determinstic 3D branching plants.

Source: Allen Pike

Dragon Curve Tree

” = UCSD

City!

22

Geographical

Sociostatistical

fmage Maps

Roadmap creation
Extended L-System

—

—

Division into lots
Subdivision

Building generation

L-System

[Geometry

Parser

Parish, Mueller:

ingine: Pipeline

Roadmap
Graph
I

Allotments

Polygons

|

Facade elements
fmage Maps

Buildings
Strings Texture Engine

. Grid creation

Geometry
Polygons

Shaders

Procedural

Renderer

Qutput
fmages

“Procedural Modeling of Cities”, ACM Siggraph 2001

= UCSD

Shape Grammar

» Shape Rules

Defines how an existing shape can be transformed

» Generation Engine

Performs the transformations

» Working Area

Displays created geometry

” = UCSD

Example:

Coca-Cola Bottle

Upper part

Label region

Lower part

Bottom

24 —

Division of a Coca-Cola bottle

Build the main body

Construct the upper part

Modify the main body

Construct the bottom

Construct the lower part

Construct the label region

Construct the cap

Rule 1l

Rule 21

Rule 22

Rule 3

Rule 4

Rule 51

Rule 52

Rule 61

Rule 62

Rule 7

Rule 81

Rule 82

Shape Computation Example

» Shape computation for two existing Coca-Cola bottles

—

I]] }:f
' ' [

— — — 1 =

Rule 1 Rule 22 Rule 51 Rule 81

Rule 4

Source: Chau et al.: “Evaluation of a 3D Shape Grammar
25 Implementation”, Design Computing and Cognition 04%@@5[)

Demonstration: Procedural Buildings

» Demo fr-041: debris by Farbrausch, 2007
4
» Single, 177 KB EXE file!

” = UCSD

