CSE 167:
 Introduction to Computer Graphics
 Lecture \#14: Procedural Modeling

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2015

Announcements

- Project 6 due tomorrow
- Monday: Midterm discussion
- Next Thursday: Midterm \#2
- Final project description released tomorrow evening

Lecture Overview

- Procedural Modeling
- Concepts
- Algorithms

3D Modeling

- Creating 3D objects/scenes and defining their appearance (texture, etc.)
- So far we created
- Triangle meshes
- Bezier patches
- Interactive modeling
- Place vertices, control points manually
- For realistic scenes, need extremely complex models containing millions or billions of primitives
- Modeling everything manually is extremely tedious

Alternatives

- Data-driven modeling
- Scan model geometry from real world examples
- Use laser scanners or similar devices
- Use photographs as textures
- Archives of 3D models

Photograph Rendering
[Levoy et al.]

- http://www-graphics.stanford.edu/data/3Dscanrep/
- Reader for PLY point file format: http://w3.impa.br/~diego/software/rply/
- Procedural modeling
- Construct 3D models and/or textures algorithmically

Procedural Modeling

- Wide variety of techniques for algorithmic model creation
- Used to create models too complex (or tedious) to build manually
- Terrain, clouds
- Plants, ecosystems
, Buildings, cities

[Deussen et al.]
- Usually defined by a small set of data, or rules, that describes the overall properties of the model
- Tree defined by branching properties and leaf shapes
- Model is constructed by an algorithm
- Often includes randomness to add variety
- E.g., a single tree pattern can be used to model an entire forest

Randomness

- Use some sort of randomness to make models more interesting, natural, less uniform
- Pseudorandom number generation algorithms
- Produce a sequence of (apparently) random numbers based on some initial seed value
- Pseudorandom sequences are repeatable, as one can always reset the sequence
- E.g., if a tree is built using pseudorandom numbers, then the entire tree can be rebuilt by resetting the seed value
- If the seed value is changed, a different sequence of numbers will be generated, resulting in a (slightly) different tree

Recursion

- Repeatedly apply the same operation (set of operations) to an object
- Generate self-similar objects: fractals
- Objects which look similar when viewed at different scales
- For example, the shape of a coastline may appear as a jagged line on a map
- As we zoom in, we see that there is more and more detail at finer scales
- We always see a jagged line no matter how close we look at the coastline

Lecture Overview

- Procedural Modeling
- Concepts
- Algorithms

Height Fields

- Landscapes are often constructed as height fields
- Regular grid on the ground plane
- Store a height value at each point
- Can store large terrain in memory
- No need to store all grid coordinates: inherent connectivity
- Shape terrain by operations that modify the height at each grid point
- Can generate height from grey scale values
- Allows using image processing tools to create terrain height

Midpoint Displacement Algorithm

- Random midpoint displacement algorithm (one-dimensional)

```
Start with single horizontal line segment.
Repeat for sufficiently large number of times
{
    Repeat over each line segment in scene
    {
        Find midpoint of line segment.
        Displace midpoint in Y by random amount.
        Reduce range for random numbers.
    }
}
```

- Similar for triangles, quadrilaterals

Step 0

Step 1

Step 2

Result: Mountain Range

Diamond Square Algorithm

- Begins with a 2D array of size $2^{n}+1$
- Four corner points must be set to initial values.
- Perform diamond and square steps alternatingly:
* The diamond step: for each square in the array, set the midpoint of that square to be the average of the four corner points plus a random value.
- The square step: for each diamond in the array, set the midpoint of that diamond to be the average of the four corner points plus a random value.
- Points located on edges of the array will have only three adjacent values set rather than four: take their average.
- At each iteration, the magnitude of the random value should be reduced.

Fractals

- Fractal:

Fragmented geometric shape which can be split into parts, each of which is (at least approximately) a smaller size copy of the whole

- Self-similarity
- Demo: Mandelbrot Set http://www.scalel8.com/canvas2.html

From Wikipedia

Video

- 3D Mandelbrot Zoom
- http://www.youtube.com/watch?v=0clz6WLfWaY

$\xlongequal{\underline{y}} \mathrm{UCSD}$

Fractal Landscapes

- Add textures, material properties; use nice rendering algorithm
- Example:Terragen Classic (free software) http://www.planetside.co.uk/terragen/

[http://www.planetside.co.uk/gallery/f/tg09]

L-Systems

- Developed by biologist Aristid Lindenmayer in 1968 to study growth patterns of algae
- Defined by grammar

$$
\mathbf{G}=\{V, S, \omega, P\}
$$

- $V=$ alphabet, set of symbols that can be replaced (variables)
- $S=$ set of symbols that remain fixed (constants)
- ω = string of symbols defining initial state
- $P=$ production rules
- Stochastic L-system
- If there is more than one production rule for a symbol, randomly choose one

Turtle Interpretation for L-Systems

- Origin: functional programming language Logo
- Dialect of Lisp
- Designed for education: drove a mechanical turtle as an output device
- Turtle interpretation of strings
- State of turtle defined by (x, y, α) for position and heading
, Turtle moves by step size d and angle increment δ
- Sample Grammar
- F: move forward a step of length d

New turtle state: ($x^{\prime}, y^{\prime}, \alpha$)
$x^{\prime}=x+d \cos \alpha$
$y^{\prime}=y+d \sin \alpha$
A line segment between points (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ is drawn.
> +:Turn left by angle δ. Next state of turtle is ($x, y, \alpha+\delta$)
Positive orientation of angles is counterclockwise.

- -:Turn right by angle δ. Next state of turtle is $(x, y, \alpha-\delta)$

Example: Sierpinski Triangle

- Variables: A, B
- Draw forward
- Constants:+, -
- Turn left, right by 60 degrees
- Start: A
- Rules: $(\mathrm{A} \rightarrow \mathrm{B}-\mathrm{A}-\mathrm{B}),(\mathrm{B} \rightarrow \mathrm{A}+\mathrm{B}+\mathrm{A})$

2 iterations

4 iterations

6 iterations

9 iterations

Example: Fern

- Variables: X, F
- X: no drawing operation
, F: move forward
- Constants: +, -
, Turn left, right
- Start: X
- Rules:

[Wikipedia]
$(\mathrm{X} \rightarrow \mathrm{F}-[[\mathrm{X}]+\mathrm{X}]+\mathrm{F}[+\mathrm{FX}]-\mathrm{X}),(\mathrm{F} \rightarrow \mathrm{FF})$

Fractal Trees

- Recursive generation of trees in 3D http://web.comhem.se/solgrop/3dtree.htm
- Model trunk and branches as cylinders
- Change color from brown to green at certain level of recursion

Some determinstic 3D branching plants.
Source: Allen Pike

Buildings, Cities: CityEngine

http://www.esri.com/software/cityengine/

CityEngine: Pipeline

Parish, Mueller: "Procedural Modeling of Cities", ACM Siggraph 2001

Shape Grammar

- Shape Rules
- Defines how an existing shape can be transformed
- Generation Engine
- Performs the transformations
- Working Area
- Displays created geometry

Example:

Coca-Cola Bottle

Evolution of Coca-Cola bottles

Division of a Coca-Cola bottle

Build the main body

Shape Computation Example

- Shape computation for two existing Coca-Cola bottles

Source: Chau et al.: "Evaluation of a 3D Shape Grammar

Demonstration: Procedural Buildings

- Demo fr-04I: debris by Farbrausch, 2007
- http://www.youtube.com/watch?v=wqu_IpkOYBg\&hd=1
- Single, 177 KB EXE file!
- http://www.farbrausch.de/

