### CSE 167: Introduction to Computer Graphics Lecture #7: Lights

Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2015

### Announcements

#### Thursday in-class: Midterm

- Can include material up to and including today's lecture
- Project 3 late grading deadline this Friday
  - Grading starts at 12:30pm, ends at 1:30pm



#### OpenGL Light Sources

- Directional Lights
- Point Lights
- Spot Lights



# Light Sources

#### Real light sources can have complex properties

- Geometric area over which light is produced
- Anisotropy (directionally dependent)
- Reflective surfaces act as light sources (indirect light)



 OpenGL uses a drastically simplified model to allow real-time rendering



## **OpenGL Light Sources**

#### At each point on surfaces we need to know

- Direction of incoming light (the L vector)
- Intensity of incoming light (the  $c_l$  values)
- Standard light sources in OpenGL
  - Directional: from a specific direction
  - Point light source: from a specific point
  - Spotlight: from a specific point with intensity that depends on direction



- OpenGL Light Sources
  - Directional Lights
  - Point Lights
  - Spot Lights



# Directional Light

- Light from a distant source
  - Light rays are parallel
  - Direction and intensity are the same everywhere
  - As if the source were infinitely far away
  - Good approximation of sunlight
- Specified by a unit length direction vector, and a color



#### OpenGL Light Sources

- Directional Lights
- Point Lights
- Spot Lights



# Point Lights

- Similar to light bulbs
- Infinitely small point radiates light equally in all directions
  - Light vector varies across receiving surface
  - What is light intensity over distance proportional to?
  - Intensity drops off proportionally to the inverse square of the distance from the light
    - Reason for inverse square falloff:
      Surface area A of sphere:
      A = 4 π r<sup>2</sup>







$$\mathbf{L} = \frac{\mathbf{p} \cdot \mathbf{v}}{\|\mathbf{p} - \mathbf{v}\|}$$
$$c_l = \frac{c_{src}}{\|\mathbf{p} - \mathbf{v}\|^2}$$



# Point Lights in OpenGL

OpenGL model for distance attenuation:

$$c_{l} = \frac{c_{src}}{k_{c} + k_{l} |\mathbf{p} - \mathbf{v}| + k_{q} |\mathbf{p} - \mathbf{v}|^{2}}$$

- Attenuation parameters:
  - k<sub>c</sub> = constant attenuation, default: I
  - $k_{I}$  = linear attenuation, default: 0
  - $k_q$  = quadratic attenuation, default: 0
- Default: no attenuation: c<sub>l</sub>=c<sub>src</sub>
- Change attenuation parameters with:
  - GL\_CONSTANT\_ATTENUATION
  - GL\_LINEAR\_ATTENUATION
  - GL\_QUADRATIC\_ATTENUATION



#### OpenGL Light Sources

- Directional Lights
- Point Lights
- Spot Lights



# Spotlights

Like point source, but intensity depends on direction

#### **P**arameters

- Position: location of light source
- Spot direction: center axis of light source
- Falloff parameters:
  - Beam width (cone angle)
  - The way the light tapers off at the edges of the beam (cosine exponent)



## Spotlights



# Spotlights



Photograph of real spotlight

Spotlights in OpenGL



### Video

#### C++ OpenGL Lesson on Basic Lighting

http://www.youtube.com/watch?v=g\_0yV7jZvGg



