CSE 167:
Introduction to Computer Graphics
Lecture 10: Scene Graph

Juargen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2013

Midterm

» Midterm has been graded

A score of 90 in the exam will count as a grade of 100

» Please return midterm after review if you want to discuss with
me later

Otherwise feel free to keep it

Average score 60.0
Median score 61.0
Highest score 89.5

Lowest score 9.5

Announcements

» Homework #4:
Glee web site has been down:
Matteo put files on Dropbox link: see course forums

» Homework #5 discussion on Monday, Nov 4

Lecture Overview

» Scene Graphs & Hierarchies
Introduction
Data structures

» Performance Optimization
Level-of-detail techniques
View Frustum Culling

Rendering Pipeline
Scene data

| Modeling and viewing |
| transformation '

s &
Shading

. 3

Projection

. 3

Rasterization,
visibility

Graphics System Architecture

Scene Graph APIs

» APIs focus on different types of applications

» OpenSceneGraph ()
Scientific visualization, virtual reality, GIS (geographic information
systems)

» NVIDIA SceniX ()

Optimized for shader support
Support for interactive ray tracing

» Java3D ()
Simple, easy to use, web-based applications
» Ogre3D ()

Games, high-performance rendering

Commonly Offered Functionality

» Resource management
Content I/O (geometry, textures, materials, animation sequences)

Memory management
» High-level scene representation

Graph data structure

» Rendering

Optimized for efficiency (e.g., minimize OpenGL state changes)

Lecture Overview

» Scene Graphs & Hierarchies
Introduction
Data structures

» Performance Optimization
Level-of-detail techniques
View Frustum Culling

Scene Graphs

» Data structure for intuitive construction of 3D scenes

» So far, our GLUT-based projects store a linear list of
objects

» This approach does not scale to large numbers of objects
in complex, dynamic scenes

- Homework Assignment #| — Animated Objects

10

Solar System

e Draw the star
e Save the current matrix

Apply a rotation
Draw Planet One
Save the current matrix

e Apply a second rotation
e Draw Moon A
e Draw Moon B
Reset the matrix we saved
Draw Planet two

Save the current matrix

e Apply a rotation
e Draw Moon C
e Draw Moon D

Reset the matrix we saved

Moon A Moon B Moon C | Moon D

e Reset the matrix we saved

Example from http://www.gamedev.net

11

Solar System with Wobble

New Node

Planets rotating at different speeds

e Draw the Star
¢ Save the current matrix

e« Apply a rotation

e o Save the current matrix

e o Apply a wobble
Separated e Draw Planet 1

/\ e e Save the current matrix

e o Apply a rotation

e o Draw Moon A
e Draw Moon B

e Reset the Matrix
* Reset the matrix
¢ Reset the matrix

e Reset the matrix
* Save the current matrix

Planet |

e« Apply a rotation

e o Draw Planet 2
e Save the current matrix

Moon C Moon D e« Apply a rotation

e Draw Moon C
e Draw Moon D

o Reset the current matrix
e Reset the current matrix

¢ Reset the current matrix

Data Structure

» Requirements
Collection of separable geometry models
Organized in groups
Related via hierarchical transformations

» Use a tree structure

» Nodes have associated local coordinates

» Different types of nodes
Geometry
Transformations
Lights
Many more

14

Class Hierarchy

» Many designs possible

» Design driven by intended application
Games
Optimized for speed
Large-scale visualization
Optimized for memory requirements

Modeling system
Optimized for editing flexibility

15

Sample Class Hierarchy

| y| 4 |

Inspired by OpenSceneGraph

Class Hierarchy
Node

» Common base class for all node types
» Stores node name, pointer to parent, bounding box
Group

» Stores list of children
Geode

» Geometry Node

» Knows how to render a specific piece of geometry

17

Class Hierarchy

MatrixTransform

» Derived from Group
» Stores additional transformation M
» Transformation applies to sub-tree below node

» Monitor-to-world transformation MM,

‘\
N

18

Class Hierarchy

Switch
» Derived from Group node
» Allows hiding (not rendering) all or subsets of its child nodes

» Can be used for state changes of geometry, or “key frame”
animation

Moon Visible Moon Infrared

19

Class Hierarchy

Sphere
» Derived from Geode

» Pre-defined geometry with parameters, e.g., for tesselation level,
solid/wireframe, etc.

Billboard

» Special geometry node to display an image always facing the viewer

Solar System

Moon C | Moon D

Source Code for Solar System

world = new Group();
world.addChild(new Star());

rotationO
rotationl
rotation?2

= new MatrixTransform
= new MatrixTransform
= new MatrixTransform

world.addChild(rotationO) ;

rotationO
rotationO
rotationO
rotationO
rotationl
rotationl
rotation?
rotation?

22

(
(
(
(
(
(
(

rotation?2)

new Planet “1)
new Planet (“2")
new Moon (“A")
new Moon (“B")
new Moon (“C')
new Moon (“D")

.addChild(rotationl)
.addChild
.addChild
.addChild
.addChild
.addChild
.addChild
.addChild

Moon A

Moon B

Moon C | Moon D

Basic Rendering

» Traverse the tree recursively

Group: :draw (Matrix4 C)

{
for all children

draw (C) ;
}

MatrixTransform: :draw (Matrix4 C)

{

C_new = C*M; // M is a class member
for all children
draw (C_new) ;

}

Geode: :draw (Matrix4 C)

{ <y . .
setModelView (C) ; Initiate rendering with

render (myObject) ; world—->draw (IDENTITY) ;
}

23

Modifying the Scene

» Change tree structure

Add, delete, rearrange nodes

» Change node parameters
Transformation matrices
Shape of geometry data

Materials

» Create new node subclasses
Animation, triggered by timer events
Dynamic “helicopter-mounted” camera
Light source

» Create application dependent nodes
Video node
Web browser node
Video conferencing node
Terrain rendering node

24

Benefits of a Scene Graph

» Can speed up rendering by efficiently using low-level API
Avoid state changes in rendering pipeline

Render objects with similar properties in batches (geometry,
shaders, materials)

» Change parameter once to affect all instances of an
object
» Abstraction from low level graphics API

Easier to write code

Code is more compact

» Can display complex objects with simple APIs

Example: osgEarth class provides scene graph node which
renders a Google Earth-style planet surface

25

Lecture Overview

» Scene Graphs & Hierarchies
Introduction
Data structures

» Performance Optimization
Level-of-detail techniques
View Frustum Culling

26

Level-of-Detail Techniques

» Don’t draw objects smaller than a threshold
Small feature culling
Popping artifacts

» Replace 3D objects by 2D impostors

Textured planes representing the objects

» Adapt triangle count to projected size

Original vs. impostor

Size dependent mesh reduction
(Data: Stanford Armadillo)

27

View Frustum Culling

» Frustum defined by 6 planes
» Each plane divides space into

Y ¢¢

“outside”, “inside”

» Check each object against
each plane

Outside, inside, intersecting
» If “outside” all planes

Outside the frustum
» If “inside” all planes

Inside the frustum

» Else partly inside and partly out

» Efficiency View frustum

28

Bounding Volumes

» Simple shape that
completely
encloses an object

» Generally a box or
sphere

» We use spheres
Easiest to work with
But hard to calculate
tight fits

» Intersect bounding

volume with view frustum
instead of each primitive

29

Distance to Plane

» A plane is described by a point p on the plane and a unit
normal n

» Find the (perpendicular) distance from point x to the
plane

*X

=]

30

Distance to Plane

» The distance is the length of the projection of x-p
onto n

31

Distance to Plane

» The distance has a sign
positive on the side of the plane the normal points to
negative on the opposite side

zero exactly on the plane

» Divides 3D space into two infinite half-spaces

S

Positive

ﬁ Negative

dist(x)=(x—p)-n i

p ¢

32

Distance to Plane
» Simplification
dist(x) = (X —p)-n
—Xx-n—p-n
dist(x) =x-n—d, d=pn
» dis independent of x

» dis distance from the origin to the plane
» We can represent a plane with just d and n

33

Frustum With Signed Planes

» Normal of each plane points outside

“outside” means positive distance

“inside” means negative distance

34

PFIS_TRUE

Test Sphere and Plane

» For sphere with radius r and origin X, test the distance to

the origin, and see if it is beyond the radius

» Three cases:
dist(X)>r
completely above
dist(X)<-r
completely below
-r<dist(X)<r

intersects

35

n i

e
o

Positive

|

Culling Summary

» Precompute the normal n and value d for each of the
six planes.

» Given a sphere with center x and radius r

» For each plane:
if dist(x) > r: sphere is outside! (no need to continue loop)
add | to count if dist(x)<-r

» If we made it through the loop, check the count:
if the count is 6, the sphere is completely inside
otherwise the sphere intersects the frustum
(can use a flag instead of a count)

36

Culling Groups of Objects

» Want to be able to cull the whole group quickly

» But if the group is partly in and partly out, want to be
able to cull individual objects

37

Hierarchical Bounding Volumes

» Given hierarchy of objects

» Bounding volume of each node encloses the bounding
volumes of all its children

» Start by testing the outermost bounding volume
If it is entirely outside, don’t draw the group at all
If it is entirely inside, draw the whole group

y= TUF'

K=

Ieﬂ
VCS ‘ y=hottom 4 z= nea} z=-far
x=right

38

Hierarchical Culling

» If the bounding volume is partly inside and partly
outside
Test each child’s bounding volume individually

If the child is in, draw it; if it’s out cull it; if it’'s partly in and
partly out, recurse.

If recursion reaches a leaf node, draw it normally

y=hottom ¥ z=-near

x=right

39

Hierarchical Culling: Octree

» Octrees are the three-dimensional analog of quadtrees.

» An octree is a tree data structure in which each node has
exactly eight children.

» Most often used to partition a 3D space by recursively
subdividing it into eight octants.

]

Source: Wikipedia
40

» An OpenGL Demo - Frustum Culling with Octree

» http://www.youtube.com/watch?v=H-Ssv/ZZv|sw

