
CSE 167:

Introduction to Computer Graphics

Lecture 10: Scene Graph

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2013

Midterm

� Midterm has been graded

� A score of 90 in the exam will count as a grade of 100

� Please return midterm after review if you want to discuss with
me later

� Otherwise feel free to keep it

2

Submissions 112

Average score 60.0

Median score 61.0

Highest score 89.5

Lowest score 9.5

Announcements

� Homework #4:
Glee web site has been down:
Matteo put files on Dropbox link: see course forums

� Homework #5 discussion on Monday, Nov 4

3

Lecture Overview

� Scene Graphs & Hierarchies

� Introduction

� Data structures

� Performance Optimization

� Level-of-detail techniques

� View Frustum Culling

4

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image
5

Graphics System Architecture

Interactive Applications

� Games, scientific visualization, virtual reality

Rendering Engine, Scene Graph API

� Implement functionality commonly required in applications

� Back-ends for different low-level APIs

� No broadly accepted standards

� Examples: OpenSceneGraph, NVSG, Java3D, Ogre

Low-level graphics API

� Interface to graphics hardware

� Highly standardized: OpenGL, Direct3D

6

Scene Graph APIs

� APIs focus on different types of applications

� OpenSceneGraph (www.openscenegraph.org)
� Scientific visualization, virtual reality, GIS (geographic information
systems)

� NVIDIA SceniX (https://developer.nvidia.com/scenix)
� Optimized for shader support

� Support for interactive ray tracing

� Java3D (http://java3d.java.net)

� Simple, easy to use, web-based applications

� Ogre3D (http://www.ogre3d.org/)
� Games, high-performance rendering

7

Commonly Offered Functionality

� Resource management

� Content I/O (geometry, textures, materials, animation sequences)

� Memory management

� High-level scene representation

� Graph data structure

� Rendering

� Optimized for efficiency (e.g., minimize OpenGL state changes)

8

Lecture Overview

� Scene Graphs & Hierarchies

� Introduction

� Data structures

� Performance Optimization

� Level-of-detail techniques

� View Frustum Culling

9

Scene Graphs

� Data structure for intuitive construction of 3D scenes

� So far, our GLUT-based projects store a linear list of
objects

� This approach does not scale to large numbers of objects
in complex, dynamic scenes

� Homework Assignment #1 – Animated Objects

10

Solar System

Example from http://www.gamedev.net

11

Star

Rotation

Planet 2Planet 1

Moon DMoon CMoon BMoon A

RotationRotation

World

Solar System with Wobble

12

Star

Rotation

Planet 2

Planet 1

Moon DMoon CMoon BMoon A

RotationRotation

World

Wobble

New Node

Planets rotating at different speeds

13

Star

Rotation

Planet 2

Planet 1

Moon DMoon CMoon BMoon A

RotationRotation

World

Wobble

Rotation

Separated

Data Structure

� Requirements

� Collection of separable geometry models

� Organized in groups

� Related via hierarchical transformations

� Use a tree structure

� Nodes have associated local coordinates

� Different types of nodes

� Geometry

� Transformations

� Lights

� Many more

14

Class Hierarchy

� Many designs possible

� Design driven by intended application
� Games

� Optimized for speed

� Large-scale visualization
� Optimized for memory requirements

� Modeling system
� Optimized for editing flexibility

15

Sample Class Hierarchy

16

Node

GeodeGroup

MatrixTransform Switch Sphere Billboard

Inspired by OpenSceneGraph

Class Hierarchy

Node

� Common base class for all node types

� Stores node name, pointer to parent, bounding box

Group

� Stores list of children

Geode

� Geometry Node

� Knows how to render a specific piece of geometry

17

Class Hierarchy

MatrixTransform

� Derived from Group

� Stores additional transformation M

� Transformation applies to sub-tree below node

� Monitor-to-world transformation M0M1

18

World

M0

M1

Star

Planet

Moon A Moon B

Class Hierarchy

Switch

� Derived from Group node

� Allows hiding (not rendering) all or subsets of its child nodes

� Can be used for state changes of geometry, or “key frame”
animation

19

M1

Moon Visible Moon Infrared

Class Hierarchy

Sphere

� Derived from Geode

� Pre-defined geometry with parameters, e.g., for tesselation level,
solid/wireframe, etc.

Billboard

� Special geometry node to display an image always facing the viewer

20

Sphere at different tessellation levels

Billboarded Tree

Solar System

21

Star

Rotation

Planet 2Planet 1

Moon DMoon CMoon BMoon A

RotationRotation

World

Source Code for Solar System
world = new Group();

world.addChild(new Star());

rotation0 = new MatrixTransform(…);

rotation1 = new MatrixTransform(…);

rotation2 = new MatrixTransform(…);

world.addChild(rotation0);

rotation0.addChild(rotation1);

rotation0.addChild(rotation2);

rotation0.addChild(new Planet(“1”));

rotation0.addChild(new Planet(“2”));

rotation1.addChild(new Moon(“A”));

rotation1.addChild(new Moon(“B”));

rotation2.addChild(new Moon(“C”));

rotation2.addChild(new Moon(“D”));

22

Star

Rotation
0

Planet 2Planet 1

Moon DMoon CMoon BMoon A

Rotation
2

Rotation
1

World

Basic Rendering

Group::draw(Matrix4 C)

{

for all children

draw(C);

}

MatrixTransform::draw(Matrix4 C)

{

C_new = C*M; // M is a class member

for all children

draw(C_new);

}

Geode::draw(Matrix4 C)

{

setModelView(C);

render(myObject);

}

� Traverse the tree recursively

Initiate rendering with
world->draw(IDENTITY);

23

Modifying the Scene

� Change tree structure

� Add, delete, rearrange nodes

� Change node parameters

� Transformation matrices

� Shape of geometry data

� Materials

� Create new node subclasses

� Animation, triggered by timer events

� Dynamic “helicopter-mounted” camera

� Light source

� Create application dependent nodes

� Video node

� Web browser node

� Video conferencing node

� Terrain rendering node

24

Benefits of a Scene Graph

� Can speed up rendering by efficiently using low-level API

� Avoid state changes in rendering pipeline

� Render objects with similar properties in batches (geometry,
shaders, materials)

� Change parameter once to affect all instances of an
object

� Abstraction from low level graphics API

� Easier to write code

� Code is more compact

� Can display complex objects with simple APIs

� Example: osgEarth class provides scene graph node which
renders a Google Earth-style planet surface

25

Lecture Overview

� Scene Graphs & Hierarchies

� Introduction

� Data structures

� Performance Optimization

� Level-of-detail techniques

� View Frustum Culling

26

Level-of-Detail Techniques

� Don’t draw objects smaller than a threshold

� Small feature culling

� Popping artifacts

� Replace 3D objects by 2D impostors

� Textured planes representing the objects

� Adapt triangle count to projected size

Impostor generation

Original vs. impostor

27
Size dependent mesh reduction

(Data: Stanford Armadillo)

View Frustum Culling

� Frustum defined by 6 planes

� Each plane divides space into
“outside”, “inside”

� Check each object against
each plane

� Outside, inside, intersecting

� If “outside” all planes

� Outside the frustum

� If “inside” all planes

� Inside the frustum

� Else partly inside and partly out

� Efficiency
View frustum

28

Bounding Volumes

� Simple shape that
completely
encloses an object

� Generally a box or
sphere

� We use spheres
� Easiest to work with

� But hard to calculate
tight fits

� Intersect bounding
volume with view frustum
instead of each primitive

29

•p

• x

Distance to Plane

� A plane is described by a point p on the plane and a unit
normal n

� Find the (perpendicular) distance from point x to the
plane

r
n

30

•p

• x

Distance to Plane

� The distance is the length of the projection of x-p
onto n

dist = x − p()

u ruuuuuu

⋅
r
n

r
n

x− p

u ruuuu

31

� The distance has a sign

� positive on the side of the plane the normal points to

� negative on the opposite side

� zero exactly on the plane

� Divides 3D space into two infinite half-spaces

•p

Distance to Plane

dist(x) = x − p()

u ruuuuuu

⋅
r
n

r
n

Positive

Negative

32

Distance to Plane

� Simplification

� d is independent of x

� d is distance from the origin to the plane

� We can represent a plane with just d and n

33

Frustum With Signed Planes

� Normal of each plane points outside

� “outside” means positive distance

� “inside” means negative distance

34

� For sphere with radius r and origin x, test the distance to
the origin, and see if it is beyond the radius

� Three cases:

� dist(x)>r

� completely above

� dist(x)<-r

� completely below

� -r<dist(x)<r

� intersects

Test Sphere and Plane

•

r
n

Positive

Negative

35

Culling Summary

� Precompute the normal n and value d for each of the
six planes.

� Given a sphere with center x and radius r

� For each plane:
� if dist(x) > r: sphere is outside! (no need to continue loop)

� add 1 to count if dist(x)<-r

� If we made it through the loop, check the count:
� if the count is 6, the sphere is completely inside

� otherwise the sphere intersects the frustum

� (can use a flag instead of a count)

36

� Want to be able to cull the whole group quickly

� But if the group is partly in and partly out, want to be
able to cull individual objects

Culling Groups of Objects

37

Hierarchical Bounding Volumes

� Given hierarchy of objects

� Bounding volume of each node encloses the bounding
volumes of all its children

� Start by testing the outermost bounding volume

� If it is entirely outside, don’t draw the group at all

� If it is entirely inside, draw the whole group

38

� If the bounding volume is partly inside and partly
outside

� Test each child’s bounding volume individually

� If the child is in, draw it; if it’s out cull it; if it’s partly in and
partly out, recurse.

� If recursion reaches a leaf node, draw it normally

Hierarchical Culling

39

Hierarchical Culling: Octree

� Octrees are the three-dimensional analog of quadtrees.

� An octree is a tree data structure in which each node has
exactly eight children.

� Most often used to partition a 3D space by recursively
subdividing it into eight octants.

40

Source: Wikipedia

Video

� An OpenGL Demo - Frustum Culling with Octree

� http://www.youtube.com/watch?v=H-SsvZZv1sw

41

