CSE 190: Virtual Reality Technologies

LECTURE #16: VR TRACKING

VR Content Presentations

Garrett Brush

Olujimi Olugboyega: Sites in VR

 https://docs.google.com/presentation/d/1cjlx9LCLkhWHCuaVn9ZdCrcbMKg G0o S PAJZGUj0io/edit?usp=sharing

Jessica Tran: Studio Ghibli VR

https://www.youtube.com/watch?v=kfrpitmVkGM

Announcements

Final Project on-line

- Due June 13th at 2pm
- Presentations 2-5pm
- Details in discussion today

Midterms to be returned Thursday

Types of Positional Tracking

"Outside-in tracking": external sensors, cameras, or markers are required (i.e., tracking constrained to specific area)

Used by most VR headsets today

"Inside-out tracking": camera or sensor is located on HMD, no need for other external devices to do tracking

 Simultaneous localization and mapping (SLAM) – classic computer vision problem

Inside-out Tracking

Marker-less inside-out tracking

Examples: Microsoft HoloLens, Intel Project Alloy, Qualcomm VR820

Eventually required by all untethered VR/AR systems

Project Alloy

Qualcomm VR820

Google's Project Tango 4MP Camera 2x Computer Vision Processors Integrated Depth Sensing **Motion Tracking Camera** also used but not shown: IMU problem: SLAM via sensor fusion

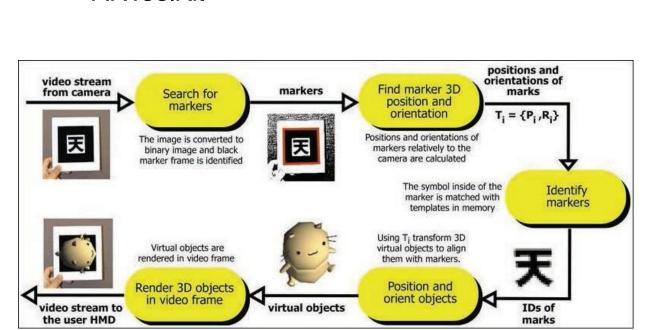
Outside-in Tracking

mechanical tracking

ultra-sonic tracking

magnetic tracking

optical tracking


GPS

WiFi positioning

marker tracking

Marker-based Tracking

- Seminal papers by Rekimoto 1998 and Kato
 & Billinghurst 1999
- Widely adopted after introduction by ARToolKit

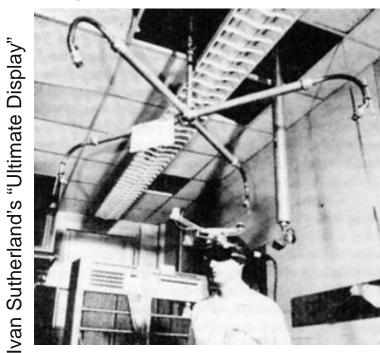
Positional Tracking - Mechanical

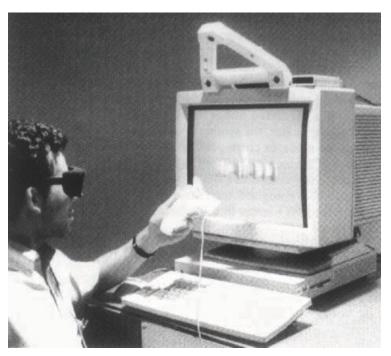
some mechanical linkage, e.g.

- fakespace BOOM
- microscribe

Positional Tracking - Mechanical

pros:


- super low latency
- very accurate


cons:

- cumbersome
- "wired" by design

Positional Tracking – Ultra-sonic

 1 transmitter, 3 receivers! triangulation

Logitech 6DOF

Positional Tracking — Ultrasonic

pros:

can be light, small, inexpensive

cons:

- line-of-sight constraints
- susceptible to acoustic interference
- low update rates

Positional Tracking - Magnetic

- reasonably good accuracy
- position and orientation
- 3 axis magnetometer in sensors,
- need magnetic field generator, e.g. Helmholtz coil
- magnetic field has to oscillate and be synchronized with magnetometers

3 axis Helmholtz coil www.directvacuum.com

Positional Tracking - Magnetic

pros:

- small, low cost, low latency sensors
- no line-of-sight constraints

cons:

- Somewhat small working volume
- Susceptible to distortions of magnetic field
- Hard to do untethered (need to sync)

3 axis Helmholtz coil www.directvacuum.com

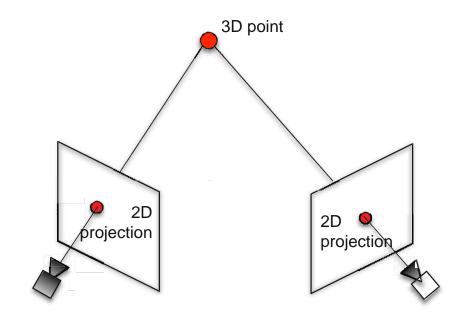
track active (near IR) LEDs

 with cameras

OR

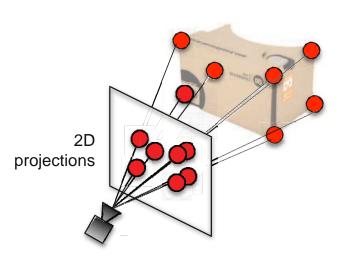
 track passive retro-reflectors with IR illumination around camera

 both Oculus Rift and HTC Vive come with optical tracking

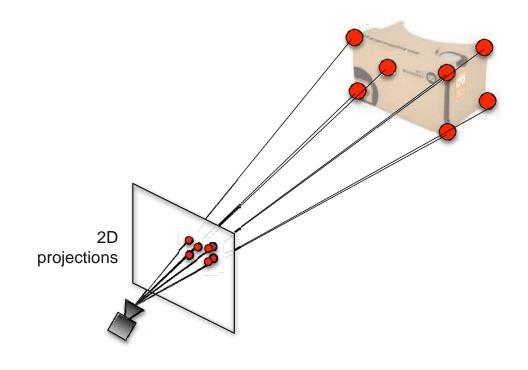


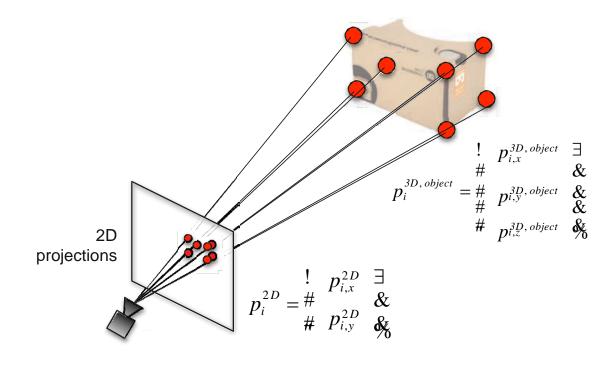
Oculus Rift
https://www.ifixit.com/Teardown/Oculus+Rift
+CV1+Teardown/60612

 for tracking individual 3D points, multi-camera setups usually use <u>triangulation</u>

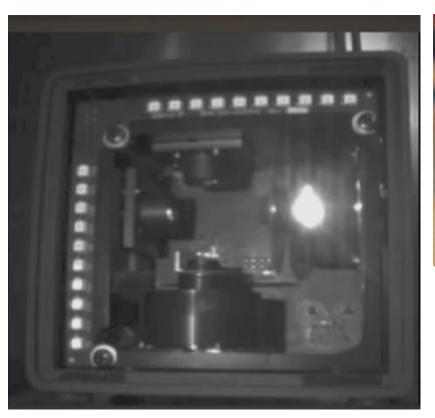

 this does not give us the pose (rotation & translation) of camera or object yet

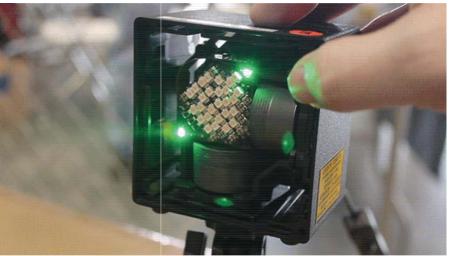
 for pose tracking, need to track multiple 3D points with known relative coordinates!


 when object is closer, projection is bigger


 when object is father, projection is smaller

... and so on


. . .



- pose estimation via optimization!
- nonlinear least squares problem

HTC Lighthouse

http://gizmodo.com/this-is-how-valve-s-amazing-lighthouse-tracking-technol-1705356768

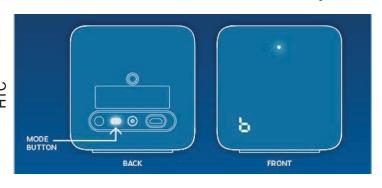
HTC Lighthouse

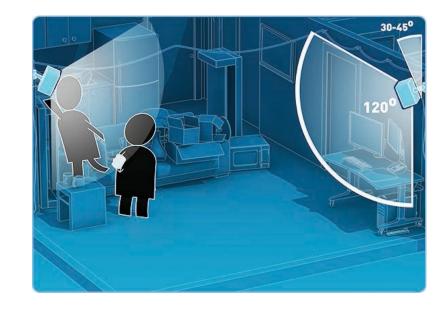
https://www.youtube.com/watch?v=J54dotTt7k0

HTC Lighthouse

important specs:

- runs at 60 Hz
 - i.e. horizontal & vertical update combined 60 Hz
 - broadband sync pulses in between each laser sweep (i.e. at 120 Hz)
- each laser rotates at 60 Hz, but offset in time
- useable field of view: 120 degrees


HTC Lighthouse – Base Station


- can use up to 2 base stations simultaneously via timedivision multiplexing (TDM)
- base station modes:

A: TDM slave with cable sync

B: TDM master

C: TDM slave with optical sync

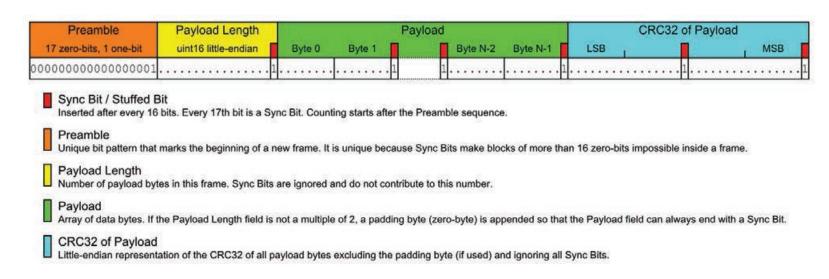
HTC Lighthouse – Base Station

- sync pulse periodically emitted (120 times per second)
- each sync pulse indicates beginning of new sweep

length of pulse also encodes additional 3 bits of

information:

 <u>axis</u>: horizontal or vertical sweep to follo 	llow
--	------


• <u>skip</u>: if 1, then laser is off for following sweep

<u>data</u>: data bits of consecutive pulses yield OOTX frame

Name	skip	data	axis	length (ticks)	length (µs)
jO	0	0	0	3000	62.5
k0	0	0	1	3500	72.9
j1	0	1	0	4000	83.3
k1	0	1	1	4500	93.8
j2	1	0	0	5000	104
k2	1	0	1	5500	115
јЗ	1	1	0	6000	125
k3	1	1	1	6500	135

HTC Lighthouse – Base Station

- OOTX frame used to communicate between base stations or with sensors
- can send calibration data and all kinds of info
- detailed info here: https://github.com/nairol/LighthouseRedox/blob/master/docs/Light%20Emissions.md#sync-pulse

