
CSE 167:
Introduction to Computer Graphics
Lecture #21: Bezier Curves

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2020

Announcements
 Sunday, December 13th at 11:59pm:
 Homework Project 4 due

 Thursday, December 17th 2:30pm until Dec 18th 2:30pm
 Final Exam
 Timed 3-hour Canvas quiz, to be taken within 24h

 Sunday, December 20thth at 11:59pm:
 Homework Project 4 late deadline

2

Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves

3

Modeling
 Creating 3D objects
 How to construct complex surfaces?
 Goal
 Specify objects with control points
 Objects should be visually pleasing (smooth)

 Start with curves, then surfaces

4

Curves
 Surface of revolution

5

Curves
 Extruded/swept surfaces

6

Curves
 Animation
 Provide a “track” for objects
 Use as camera path

7

Video
 Bezier Curves
 http://www.youtube.com/watch?v=hlDYJNEiYvU

8

http://www.youtube.com/watch?v=hlDYJNEiYvU

Curves
 Can be generalized to surface patches

9

Curve Representation
Why not specify many points along a curve and connect with lines:
 Can’t get smooth results when magnified – more points needed
 Large storage and CPU requirements

Instead: specify a curve with a small number of “control points”
 Known as a spline curve or spline.

Control
point

10

Spline: Definition
 Wikipedia:
 Term comes from flexible spline

devices used by shipbuilders and
draftsmen to draw smooth shapes.

 Spline consists of a long strip fixed
in position at a number of points
that relaxes to form a smooth curve
passing through those points.

11

http://upload.wikimedia.org/wikipedia/commons/f/fd/Spline_(PSF).png

Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves

12

Interpolating Control Points
 “Interpolating” means that curve goes through all control

points
 A.k.a. “Anchor Points”
 Seems most intuitive
 But hard to control exact behavior

13

Approximating Control Points
 Curve is “influenced” by control points

 Various types
 Most common: polynomial functions
 Bézier spline (our focus)
 B-spline (generalization of Bézier spline)
 NURBS (Non Uniform Rational Basis Spline): used in CAD tools

14

 A vector valued function of one variable x(t)
 Given t, compute a 3D point x=(x,y,z)
 Could be interpreted as three functions: x(t), y(t), z(t)
 Parameter t “moves a point along the curve”

Mathematical Definition

x

y

z

x(0.0) x(0.5) x(1.0)

x(t)

15

Tangent Vector

 Derivative
 Vector x’:
 Points in direction of movement
 Length corresponds to speed

x’(0.0) x’(0.5) x’(1.0)

x(t)

x

y

z

16

Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves

17

Polynomial Functions

 Linear:
(1st order)

 Quadratic:
(2nd order)

 Cubic:
(3rd order)

18

Polynomial Curves in 3D
 Linear

 Evaluated as:

19

Polynomial Curves in 3D
 Quadratic:

(2nd order)

 Cubic:
(3rd order)

 We usually define the curve for 0 ≤ t ≤ 1

20

Control Points
 Polynomial coefficients a, b, c, d can be interpreted as

control points
 Remember: a, b, c, d have x,y,z components each

 But: they do not intuitively describe the shape of the curve
 Goal: intuitive control points

21

Weighted Average
 Based on linear interpolation (LERP)
 Weighted average between two values
 “Value” could be a number, vector, color, …

 Interpolate between points p0 and p1 with parameter t
 Defines a “curve” that is straight (first-order spline)

p0

p1

t=1
.

. 0<t<1
t=0

x(t) = Lerp t, p0 , p1()= 1− t()p0 + t p1

22

 Curve is based at point p0
 Add the vector, scaled by t

.



x(t) = (p1 − p0)
vector
 

 t + p0
point


p0.

Linear Polynomial

p1-p0

.5(p1-p0)

.

23

 Geometry matrix

 Geometric basis

 Polynomial basis

 In components

Matrix Form

24

Summary

1. Grouped by points p: weighted average

2. Grouped by t: linear polynomial

3. Matrix form:

25

Tangent

 Weighted average

 Polynomial

 Matrix form

26

Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves

27

Bézier Curves
 Invented by Pierre Bézier in the 1960s for designing

curves for the bodywork of Renault cars
 Are a higher order extension of linear interpolation
 Give intuitive control over curve with control points
 Endpoints are interpolated, intermediate points are

approximated

p0

p1

p0

p1
p2

p0

p1

p2

p3

Linear Quadratic Cubic

28

Cubic Bézier Curve
 Most commonly used case
 Defined by four control points:
 Two interpolated endpoints (points are on the curve)
 Two points control the tangents at the endpoints

 Points x on curve defined as function of parameter t

29

p0

p1

p2

p3

x(t)
•

Demo
 http://blogs.sitepointstatic.com/examples/tech/canvas-

curves/bezier-curve.html

30

http://blogs.sitepointstatic.com/examples/tech/canvas-curves/bezier-curve.html

Algorithmic Construction
 Algorithmic construction

 De Casteljau algorithm, developed at Citroen in 1959,
named after its inventor Paul de Casteljau (pronounced
“Cast-all-’Joe”)

 Developed independently from Bézier’s work:
Bézier created the formulation using blending functions,
Casteljau devised the recursive interpolation algorithm

31

De Casteljau Algorithm
 A recursive series of linear interpolations
 Works for any order Bezier function, not only cubic

 Not very efficient to evaluate
 Other forms more commonly used

 But:
 Gives intuition about the geometry
 Useful for subdivision

32

De Casteljau Algorithm

p0

p1

p2

p3

 Given:
 Four control points
 A value of t (here t≈0.25)

33

De Casteljau Algorithm

p0

q0

p1

p2

p3

q2

q1

q0 (t) = Lerp t,p0 ,p1()
q1(t) = Lerp t,p1,p2()
q2 (t) = Lerp t,p2 ,p3()

34

De Casteljau Algorithm

q0

q2

q1

r1

r0

r0 (t) = Lerp t,q0 (t),q1(t)()
r1(t) = Lerp t,q1(t),q2 (t)()

35

De Casteljau Algorithm

r1x

r0 •

x(t) = Lerp t,r0 (t),r1(t)()

36

x
•

p0

p1

p2

p3

De Casteljau Algorithm

Demo
 https://www.jasondavies.com/animated-bezier/

37

https://www.jasondavies.com/animated-bezier/

x = Lerp t,r0 ,r1()
r0 = Lerp t,q0 ,q1()
r1 = Lerp t,q1,q2()

q0 = Lerp t,p0 ,p1()
q1 = Lerp t,p1,p2()
q2 = Lerp t,p2 ,p3()

p0

p1

p2

p3
 p1

q0

r0 p2

x q1

r1 p3

q2

p4

Recursive Linear Interpolation

38

Expand the LERPs
q0 (t) = Lerp t,p0 ,p1()= 1− t()p0 + tp1

q1(t) = Lerp t,p1,p2()= 1− t()p1 + tp2

q2 (t) = Lerp t,p2 ,p3()= 1− t()p2 + tp3

r0 (t) = Lerp t,q0 (t),q1(t)()= 1− t() 1− t()p0 + tp1()+ t 1− t()p1 + tp2()
r1(t) = Lerp t,q1(t),q2 (t)()= 1− t() 1− t()p1 + tp2()+ t 1− t()p2 + tp3()

x(t) = Lerp t,r0 (t),r1(t)()
= 1− t() 1− t() 1− t()p0 + tp1()+ t 1− t()p1 + tp2()()
 +t 1− t() 1− t()p1 + tp2()+ t 1− t()p2 + tp3()()

39



x(t) = 1− t() 1− t() 1− t()p0 + tp1()+ t 1− t()p1 + tp2()()
+t 1− t() 1− t()p1 + tp2()+ t 1− t()p2 + tp3()()

x(t) = 1− t()3 p0 + 3 1− t()2 tp1 + 3 1− t()t 2p2 + t 3p3

x(t) = −t 3 + 3t 2 − 3t +1()
B0 (t)  

p0 + 3t 3 − 6t 2 + 3t()
B1 (t)  

p1

+ −3t 3 + 3t 2()
B2 (t)

  
p2 + t 3()

B3 (t)


p3

Weighted Average of Control Points
 Regroup for p:

40

 Weights Bi(t) add up to 1 for any value of t

 x(t) = B0 t()p0 + B1 t()p1 + B2 t()p2 + B3 t()p3

The cubic Bernstein polynomials :
 B0 t()= −t 3 + 3t 2 − 3t +1

 B1 t()= 3t 3 − 6t 2 + 3t

 B2 t()= −3t 3 + 3t 2

 B3 t()= t 3

 Bi (t) = 1∑

Cubic Bernstein Polynomials

41

General Bernstein Polynomials
B0

1 t()= −t +1 B0
2 t()= t 2 − 2t +1 B0

3 t()= −t 3 + 3t 2 − 3t +1
B1

1 t()= t B1
2 t()= −2t 2 + 2t B1

3 t()= 3t 3 − 6t 2 + 3t
B2

2 t()= t 2 B2
3 t()= −3t 3 + 3t 2

B3
3 t()= t 3

Bi
n t()=

n
i






1− t()n− i t()i
n
i





=

n!
i! n − i()!

Bi
n t()∑ = 1 n! = factorial of n

(n+1)! = n! x (n+1)
42

Any order Bézier Curves
 nth-order Bernstein polynomials form nth-order

Bézier curves

Bi
n t()=

n
i






1− t()n− i t()i

x t()= Bi
n t()pi

i=0

n

∑

43

Demo: Bezier curves of multiple orders
 http://www.ibiblio.org/e-notes/Splines/bezier.html

44

http://www.ibiblio.org/e-notes/Splines/bezier.html

Useful Bézier Curve Properties

 Convex Hull property
 Affine Invariance

45

p0

p1

p2

p3

Convex Hull Property
 A Bézier curve is always inside the convex hull
 Makes curve predictable
 Allows culling, intersection testing, adaptive tessellation

46

Affine Invariance
Transforming Bézier curves
 Two ways to transform:
 First transform control points, then compute spline points
 First compute spline points, then transform them

 Results are identical
 Invariant under affine transformations

47

 Good for fast evaluation
 Precompute constant coefficients (a,b,c,d)

 Not much geometric intuition

Start with Bernstein form:

 x(t) = −t 3 + 3t 2 − 3t +1()p0 + 3t 3 − 6t 2 + 3t()p1 + −3t 3 + 3t 2()p2 + t 3()p3

Regroup into coefficients of t :
x(t) = −p0 + 3p1 − 3p2 + p3()t 3 + 3p0 − 6p1 + 3p2()t 2 + −3p0 + 3p1()t + p0()1

x(t) = at 3 + bt 2 + ct + d

a = −p0 + 3p1 − 3p2 + p3()
b = 3p0 − 6p1 + 3p2()
c = −3p0 + 3p1()
d = p0()

Cubic Polynomial Form

48



x(t) = a

b c d 

t 3

t 2

t
1



















a = −p0 + 3p1 − 3p2 + p3()

b = 3p0 − 6p1 + 3p2()
c = −3p0 + 3p1()
d = p0()

x(t) = p0 p1 p2 p3[]

GBez

  

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



















BBez

  

t 3

t 2

t
1



















T


Cubic Matrix Form

49

𝑥𝑥 𝑡𝑡 = 𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑇𝑇 = 𝐶𝐶 𝑇𝑇

 Other types of cubic splines use different basis matrices
 Efficient evaluation
 Pre-compute C
 Use existing 4x4 matrix hardware support

Matrix Form

50

Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves

51

Drawing Bézier Curves
 Draw line segments or individual pixels
 Approximate the curve as a series of line segments

(tessellation)
 Uniform sampling
 Adaptive sampling
 Recursive subdivision

52

Uniform Sampling
 Approximate curve with N straight segments
 N chosen in advance
 Evaluate

 Connect points with lines

 Too few points?
 Poor approximation: “curve” is faceted

 Too many points?
 Slow to draw too many line segments



xi = x ti() where ti =
i
N

 for i = 0, 1,, N

xi =
a i3

N 3 +

b i2

N 2 +
c i

N
+ d

x4

x0

x1

x2

x3

x(t)

53

Adaptive Sampling
 Use only as many line segments as you need
 Fewer segments where curve is mostly flat
 More segments where curve bends
 Segments never smaller than a pixel

x(t)

54

Recursive Subdivision
 Any cubic curve segment can be expressed as a

Bézier curve
 Any piece of a cubic curve is itself a cubic curve
 Therefore:
 Any Bézier curve can be broken down into smaller Bézier

curves

55

 De Casteljau construction points
are the control points of two Bézier
sub-segments

De Casteljau Subdivision

xp0

p1

p2

p3

q0
r0

r1

q2

56

Adaptive Subdivision Algorithm
 Use De Casteljau construction to split Bézier segment in

two
 For each part
 If “flat enough”: draw line segment
 Else: continue recursion

 Curve is flat enough if hull is flat enough
 Test how far the approximating control points are from a straight

segment
 If less than one pixel, the hull is flat enough

57

Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Longer curves

58

More Control Points
 Cubic Bézier curve limited to 4 control points
 Cubic curve can only have one inflection (point where curve changes

direction of bending)
 Need more control points for more complex curves

 k-1 order Bézier curve with k control points

 Hard to control and hard to work with
 Intermediate points don’t have obvious effect on shape
 Changing any control point changes the whole curve
 Want local support: each control point only influences nearby portion of

curve

59

Piecewise Curves
 Sequence of line segments
 Piecewise linear curve

 Sequence of cubic curve segments
 Piecewise cubic curve (here piecewise Bézier)

60

Global Parameterization
 Given N curve segments x0(t), x1(t), …, xN-1(t)
 Each is parameterized for t from 0 to 1
 Define a piecewise curve
 Global parameter u from 0 to N

 Alternate solution: u defined from 0 to 1


x(u) =

x0 (u), 0 ≤ u ≤ 1
x1(u −1), 1 ≤ u ≤ 2
 

xN −1(u − N −1()), N −1 ≤ u ≤ N











x(u) = xi (u − i), where i = u  (and x(N) = xN −1(1))

x(u) = xi (Nu − i), where i = Nu 

61

Piecewise Bézier curve



• Given 3N +1 points p0 ,p1,,p3N

• Define N Bézier segments:
x0 (t) = B0 (t)p0 + B1(t)p1 + B2 (t)p2 + B3(t)p3

x1(t) = B0 (t)p3 + B1(t)p4 + B2 (t)p5 + B3(t)p6



 xN −1(t) = B0 (t)p3N −3 + B1(t)p3N −2 + B2 (t)p3N −1 + B3(t)p3N

x0(t)

x1(t)

x2(t)

x3(t)

p0

p1
p2

p3

p4
p5

p6

p7 p8

p9

p10 p11

p12

62

Piecewise Bézier Curve



 x(u) =

x0 (1
3 u), 0 ≤ u ≤ 3

x1(1
3 u −1), 3 ≤ u ≤ 6

 

xN −1(1
3 u − (N −1)), 3N − 3 ≤ u ≤ 3N











 x(u) = xi
1
3 u − i(), where i = 1

3 u 

 Parameter in 0<=u<=3N

x0(t) x1(t)

x2(t) x3(t)

x(3.5)

x(8.75)

u=0
u=12

63

Parametric Continuity
 C0 continuity:

 Curve segments are connected
 C1 continuity:

 C0 & 1st-order derivatives agree
 Curves have same tangents
 Relevant for smooth shading

 C2 continuity:
 C1 & 2nd-order derivatives agree
 Curves have same tangents and curvature
 Relevant for high quality reflections

 3N+1 points define N Bézier segments
 x(3i)=p3i
 C0 continuous by construction
 C1 continuous at p3i when p3i - p3i-1 = p3i+1 - p3i
 C2 is harder to achieve and rarely necessary

Piecewise Bézier Curve

p0

p1

p2

P3
p6

p5

p4

C1 continuous

p0

P3

p2

p1

p4

p5

p6

C1 discontinuous
65

Piecewise Bézier Curves
 Used often in 2D drawing programs
 Inconveniences
 Must have 4 or 7 or 10 or 13 or … (1 plus a multiple of 3)

control points
 Some points interpolate, others approximate
 Need to impose constraints on control points to obtain C1

continuity
 Solutions
 User interface using “Bézier handles” to ascertain C1 continuity
 Generalization to B-splines or NURBS

66

Bézier Handles

 Segment end points
(interpolating)
presented as curve
control points

 Midpoints
(approximating
points) presented as
“handles”

 Can have option to
enforce C1 continuity

Adobe Illustrator

67

Demo: Bezier handles
 http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.ht

ml

68

http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html

Rational Curves
 Weight causes point to “pull” more (or less)
 Can model circles with proper points and weights,
 Below: rational quadratic Bézier curve (three control points)

pull less

69

B-Splines
 B as in Basis-Splines
 Basis is blending function
 Difference to Bézier blending function:
 B-spline blending function can be zero outside a particular

range (limits scope over which a control point has influence)

 B-Spline is defined by control points and range in which
each control point is active.

70

NURBS
 Non Uniform Rational B-Splines
 Generalization of Bézier curves
 Non uniform:
 Combine B-Splines (limited scope of control points) and

Rational Curves (weighted control points)
 Can exactly model conic sections (circles, ellipses)
 OpenGL support: see gluNurbsCurve

 Demos:
 http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2d/index.

html
 http://geometrie.foretnik.net/files/NURBS-en.swf

71

http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2d/index.html
http://geometrie.foretnik.net/files/NURBS-en.swf

	CSE 167:�Introduction to Computer Graphics�Lecture #21: Bezier Curves
	Announcements
	Lecture Overview
	Modeling
	Curves
	Curves
	Curves
	Video
	Curves
	Curve Representation
	Spline: Definition
	Lecture Overview
	Interpolating Control Points
	Approximating Control Points
	Mathematical Definition
	Tangent Vector
	Lecture Overview
	Polynomial Functions
	Polynomial Curves in 3D
	Polynomial Curves in 3D
	Control Points
	Weighted Average
	Linear Polynomial
	Matrix Form
	Summary
	Tangent
	Lecture Overview
	Bézier Curves
	Cubic Bézier Curve
	Demo
	Algorithmic Construction
	De Casteljau Algorithm
	De Casteljau Algorithm
	De Casteljau Algorithm
	De Casteljau Algorithm
	De Casteljau Algorithm
	De Casteljau Algorithm
	Recursive Linear Interpolation
	Expand the LERPs
	Weighted Average of Control Points
	Cubic Bernstein Polynomials
	General Bernstein Polynomials
	Any order Bézier Curves
	Demo: Bezier curves of multiple orders
	Useful Bézier Curve Properties
	Convex Hull Property
	Affine Invariance
	Cubic Polynomial Form
	Cubic Matrix Form
	Matrix Form
	Lecture Overview
	Drawing Bézier Curves
	Uniform Sampling
	Adaptive Sampling
	Recursive Subdivision
	De Casteljau Subdivision
	Adaptive Subdivision Algorithm
	Lecture Overview
	More Control Points
	Piecewise Curves
	Global Parameterization
	Piecewise Bézier curve
	Piecewise Bézier Curve
	Parametric Continuity
	Piecewise Bézier Curve
	Piecewise Bézier Curves
	Bézier Handles
	Demo: Bezier handles
	Rational Curves
	B-Splines
	NURBS

