CSE 167:
Introduction to Computer Graphics Lecture \#21: Bezier Curves

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2020

Announcements

- Sunday, December I3 ${ }^{\text {th }}$ at II:59pm:
- Homework Project 4 due
- Thursday, December $17^{\text {th }} 2: 30$ pm until Dec $18^{\text {th }} 2: 30$ pm
- Final Exam
- Timed 3-hour Canvas quiz, to be taken within 24h
- Sunday, December 20th ${ }^{\text {th }}$ at II:59pm:
- Homework Project 4 late deadline

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Modeling

- Creating 3D objects
- How to construct complex surfaces?
- Goal
- Specify objects with control points
- Objects should be visually pleasing (smooth)
- Start with curves, then surfaces

Curves

- Surface of revolution

Curves

- Extruded/swept surfaces

Curves

- Animation

" Provide a "track" for objects

- Use as camera path

Video

- Bezier Curves
- http://www.youtube.com/watch?v=hIDYJNEiYvU

Curves

- Can be generalized to surface patches

Curve Representation

Why not specify many points along a curve and connect with lines:
, Can't get smooth results when magnified - more points needed

- Large storage and CPU requirements

Instead: specify a curve with a small number of "control points"

- Known as a spline curve or spline.

Spline: Definition

- Wikipedia:
- Term comes from flexible spline devices used by shipbuilders and draftsmen to draw smooth shapes.
- Spline consists of a long strip fixed in position at a number of points that relaxes to form a smooth curve passing through those points.

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Interpolating Control Points

- "Interpolating" means that curve goes through all control points
- A.k.a."Anchor Points"
- Seems most intuitive
- But hard to control exact behavior

Approximating Control Points

- Curve is "influenced" by control points
- Various types
- Most common: polynomial functions
- Bézier spline (our focus)
- B-spline (generalization of Bézier spline)
- NURBS (Non Uniform Rational Basis Spline): used in CAD tools

Mathematical Definition

- A vector valued function of one variable $\mathbf{x}(t)$
- Given t, compute a 3D point $\mathbf{x}=(x, y, z)$
- Could be interpreted as three functions: $x(t), y(t), \mathrm{z}(t)$
- Parameter t "moves a point along the curve"

Tangent Vector

- Derivative $\mathbf{x}^{\prime}(t)=\frac{d \mathbf{x}}{d t}=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$
- Vector x':
- Points in direction of movement
- Length corresponds to speed

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Polynomial Functions

- Linear:

$$
f(t)=a t+b
$$

(Ist order)

- Quadratic: $f(t)=a t^{2}+b t+c$ (2 ${ }^{\text {nd }}$ order)

- Cubic: $\quad f(t)=a t^{3}+b t^{2}+c t+d$ (3rd order)

Polynomial Curves in 3D

- Linear $\mathbf{x}(t)=\mathbf{a} t+\mathbf{b}$

$$
\mathbf{x}=(x, y, z), \mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right), \mathbf{b}=\left(b_{x}, b_{y}, b_{z}\right)
$$

$$
x(t)=a_{x} t+b_{x}
$$

$$
y(t)=a_{y} t+b_{y}
$$

$$
z(t)=a_{z} t+b_{z}
$$

Polynomial Curves in 3D

Quadratic: $\quad \mathbf{x}(t)=\mathbf{a} t^{2}+\mathbf{b} t+\mathbf{c}$ (2 ${ }^{\text {nd }}$ order)

- Cubic: $\quad \mathbf{x}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}$ (3 ${ }^{\text {rd }}$ order)

- We usually define the curve for $0 \leq t \leq 1$

Control Points

- Polynomial coefficients a, b, c, d can be interpreted as control points
- Remember: a, b, c, d have x, y, z components each
- But: they do not intuitively describe the shape of the curve
- Goal: intuitive control points

Weighted Average

- Based on linear interpolation (LERP)
- Weighted average between two values
- "Value" could be a number, vector, color, ...
- Interpolate between points $\mathbf{p}_{\mathbf{0}}$ and $\mathbf{p}_{\mathbf{1}}$ with parameter t
- Defines a "curve" that is straight (first-order spline)

$$
\mathbf{x}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}
$$

Linear Polynomial

$$
\mathbf{x}(t)=\underbrace{\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)}_{\text {vector }} t+\underbrace{\mathbf{p}_{0}}_{\substack{\text { point } \\ \mathbf{a}}}
$$

- Curve is based at point $\mathbf{p}_{\mathbf{0}}$
- Add the vector, scaled by t

Matrix Form

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
\mathbf{p}_{0} & \mathbf{p}_{1}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]=\mathbf{G B T}
$$

- Geometry matrix $\mathbf{G}=\left[\begin{array}{ll}\mathbf{p}_{0} & \mathbf{p}_{1}\end{array}\right]$
- Geometric basis $\quad \mathbf{B}=\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]$
- Polynomial basis

$$
T=\left[\begin{array}{l}
t \\
1
\end{array}\right]
$$

- In components

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
p_{0 x} & p_{1 x} \\
p_{0 y} & p_{1 y} \\
p_{0 z} & p_{1 z}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
t \\
1
\end{array}\right]
$$

Summary

1. Grouped by points p: weighted average

$$
\mathbf{x}(t)=\mathbf{p}_{0}(1-t)+\mathbf{p}_{1} t
$$

2. Grouped by t : linear polynomial

$$
\mathbf{x}(t)=\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t+\mathbf{p}_{0}
$$

3. Matrix form:

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
\mathbf{p}_{0} & \mathbf{p}_{1}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]
$$

Tangent

- Weighted average $\mathbf{x}^{\prime}(t)=(-1) \mathbf{p}_{0}+(+1) \mathbf{p}_{1}$
- Polynomial

$$
\mathbf{x}^{\prime}(t)=0 t+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)
$$

- Matrix form $\quad \mathbf{x}^{\prime}(t)=\left[\begin{array}{ll}\mathbf{p}_{0} & \mathbf{p}_{1}\end{array}\right]\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Bézier Curves

- Invented by Pierre Bézier in the 1960s for designing curves for the bodywork of Renault cars
- Are a higher order extension of linear interpolation
- Give intuitive control over curve with control points
- Endpoints are interpolated, intermediate points are approximated

Cubic Bézier Curve

- Most commonly used case
- Defined by four control points:
> Two interpolated endpoints (points are on the curve)
- Two points control the tangents at the endpoints
- Points \mathbf{x} on curve defined as function of parameter t

Demo

- http://blogs.sitepointstatic.com/examples/tech/canvas-curves/bezier-curve.html

Algorithmic Construction

- Algorithmic construction

De Casteljau algorithm, developed at Citroen in 1959, named after its inventor Paul de Casteljau (pronounced "Cast-all-’Joe")
Developed independently from Bézier's work: Bézier created the formulation using blending functions, Casteljau devised the recursive interpolation algorithm

De Casteljau Algorithm

- A recursive series of linear interpolations
- Works for any order Bezier function, not only cubic
- Not very efficient to evaluate
- Other forms more commonly used
- But:
b Gives intuition about the geometry
- Useful for subdivision

De Casteljau Algorithm

- Given:
- Four control points
- A value of t (here $t \approx 0.25$)

De Casteljau Algorithm

$$
\begin{aligned}
& \mathbf{q}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right) \\
& \mathbf{q}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right) \\
& \mathbf{q}_{2}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)
\end{aligned}
$$

De Casteljau Algorithm

$$
\begin{aligned}
\mathbf{r}_{0}(t) & =\operatorname{Lerp}\left(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)\right) \\
\mathbf{r}_{1}(t) & =\operatorname{Lerp}\left(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)\right)
\end{aligned}
$$

De Casteljau Algorithm

$\mathbf{x}(t)=\operatorname{Lerp}\left(t, \mathbf{r}_{0}(t), \mathbf{r}_{1}(t)\right)$

De Casteljau Algorithm

, https://www.jasondavies.com/animated-bezier/

Recursive Linear Interpolation

$$
\left.\begin{array}{rl}
\mathbf{x}=\operatorname{Lerp}\left(t, \mathbf{r}_{0}, \mathbf{r}_{1}\right)^{\mathbf{r}_{0}} & =\operatorname{Lerp}\left(t, \mathbf{q}_{0}, \mathbf{q}_{1}\right) \\
\mathbf{r}_{1}= & \mathbf{q}_{0}=\operatorname{Lerp}\left(t, \mathbf{q}_{1}, \mathbf{q}_{2}\right) \\
\mathbf{q}_{1} & =\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right)
\end{array} \mathbf{p}_{\mathbf{p}_{2}}=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right) \mathbf{p}_{0}\right)\left(\begin{array}{l}
\mathbf{p}_{1} \\
\mathbf{p}_{2}
\end{array}\right.
$$

Expand the LERPs

$$
\begin{aligned}
& \mathbf{q}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1} \\
& \mathbf{q}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right)=(1-t) \mathbf{p}_{1}+t \mathbf{p}_{2} \\
& \mathbf{q}_{2}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)=(1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{r}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)\right)=(1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right) \\
& \mathbf{r}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)\right)=(1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)
\end{aligned}
$$

$$
\mathbf{x}(t)=\operatorname{Lerp}\left(t, \mathbf{r}_{0}(t), \mathbf{r}_{1}(t)\right)
$$

$$
=(1-t)\left((1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)\right)
$$

$$
+t\left((1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)\right)
$$

Weighted Average of Control Points

- Regroup for p :

$$
\begin{aligned}
\mathbf{x}(t)= & (1-t)\left((1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)\right) \\
& +t\left((1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)\right) \\
\mathbf{x}(t) & =(1-t)^{3} \mathbf{p}_{0}+3(1-t)^{2} t \mathbf{p}_{1}+3(1-t) t^{2} \mathbf{p}_{2}+t^{3} \mathbf{p}_{3} \\
\mathbf{x}(t) & =\overbrace{\left(-t^{3}+3 t^{2}-3 t+1\right)}^{B_{0}(t)} \mathbf{p}_{0}+\overbrace{\left(3 t^{3}-6 t^{2}+3 t\right)}^{B_{1}(t)} \mathbf{p}_{1} \\
& +\underbrace{\left(-3 t^{3}+3 t^{2}\right)}_{B_{2}(t)} \mathbf{p}_{2}+\underbrace{t^{3}}_{B_{3}(t)}) \mathbf{p}_{3}
\end{aligned}
$$

Cubic Bernstein Polynomials

$$
\mathbf{x}(t)=B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}+B_{2}(t) \mathbf{p}_{2}+B_{3}(t) \mathbf{p}_{3}
$$

The cubic Bernstein polynomials:

$$
\begin{aligned}
& B_{0}(t)=-t^{3}+3 t^{2}-3 t+1 \\
& B_{1}(t)=3 t^{3}-6 t^{2}+3 t \\
& B_{2}(t)=-3 t^{3}+3 t^{2} \\
& B_{3}(t)=t^{3} \\
& \sum B_{i}(t)=1
\end{aligned}
$$

Bernstein Cubic Polynomials

- Weights $\mathrm{B}_{\mathrm{i}}(t)$ add up to I for any value of t

General Bernstein Polynomials

$$
\begin{array}{lll}
B_{0}^{1}(t)=-t+1 & B_{0}^{2}(t)=t^{2}-2 t+1 & B_{0}^{3}(t)=-t^{3}+3 t^{2}-3 t+1 \\
B_{1}^{1}(t)=t & B_{1}^{2}(t)=-2 t^{2}+2 t & B_{1}^{3}(t)=3 t^{3}-6 t^{2}+3 t \\
& B_{2}^{2}(t)=t^{2} & B_{2}^{3}(t)=-3 t^{3}+3 t^{2} \\
& & B_{3}^{3}(t)=t^{3} \\
& &
\end{array}
$$

$$
B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i}(t)^{i}
$$

$$
\binom{n}{i}=\frac{n!}{i!(n-i)!}
$$

$$
\begin{array}{ll}
\sum B_{i}^{n}(t)=1 & n!=\text { factorial of } n \\
(n+1)!=n!\times(n+1)
\end{array}
$$

Any order Bézier Curves

- nth-order Bernstein polynomials form nth-order Bézier curves

$$
\begin{aligned}
& B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i}(t)^{i} \\
& \mathbf{x}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) \mathbf{p}_{i}
\end{aligned}
$$

Demo: Bezier curves of multiple orders

- http://www.ibiblio.org/e-notes/Splines/bezier.html

$\stackrel{F}{*}$ UCSD

Useful Bézier Curve Properties

- Convex Hull property
- Affine Invariance

Convex Hull Property

- A Bézier curve is always inside the convex hull
- Makes curve predictable
- Allows culling, intersection testing, adaptive tessellation

Affine Invariance

Transforming Bézier curves

- Two ways to transform:
- First transform control points, then compute spline points
- First compute spline points, then transform them
- Results are identical
- Invariant under affine transformations

Cubic Polynomial Form

Start with Bernstein form:

$$
\mathbf{x}(t)=\left(-t^{3}+3 t^{2}-3 t+1\right) \mathbf{p}_{0}+\left(3 t^{3}-6 t^{2}+3 t\right) \mathbf{p}_{1}+\left(-3 t^{3}+3 t^{2}\right) \mathbf{p}_{2}+\left(t^{3}\right) \mathbf{p}_{3}
$$

Regroup into coefficients of t :

$$
\mathbf{x}(t)=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) t^{3}+\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) t^{2}+\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) t+\left(\mathbf{p}_{0}\right) 1
$$

$$
\begin{aligned}
& \mathbf{a}=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) \\
& \mathbf{b}=\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) \\
& \mathbf{c}=\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) \\
& \mathbf{d}=\left(\mathbf{p}_{0}\right)
\end{aligned}
$$

- Good for fast evaluation
- Precompute constant coefficients (a,b,c,d)
- Not much geometric intuition

Cubic Matrix Form

$$
\begin{gathered}
\left.\mathbf{x}(t)=\begin{array}{llll}
\overrightarrow{\overrightarrow{\mathbf{a}}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}} & \mathbf{d}
\end{array}\right]\left[\begin{array}{l}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right] \begin{array}{l}
\overrightarrow{\mathbf{a}}=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) \\
\overrightarrow{\mathbf{b}}=\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) \\
\overrightarrow{\mathbf{c}}=\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) \\
\mathbf{d}=\left(\mathbf{p}_{0}\right)
\end{array} \\
\mathbf{x}(t)=\underbrace{\left[\begin{array}{llll}
\mathbf{p}_{0} & \mathbf{p}_{1} & \mathbf{p}_{2} & \mathbf{p}_{3}
\end{array}\right]}_{\mathbf{G}_{\text {Bez }}} \underbrace{\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]}_{\mathbf{B}_{\text {Bez }}} \underbrace{\left[\begin{array}{l}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]}_{\mathbf{T}} \\
x(t)=G_{B e Z} B_{B e Z} T=C T
\end{gathered}
$$

Matrix Form

- Other types of cubic splines use different basis matrices
- Efficient evaluation
- Pre-compute C
- Use existing 4×4 matrix hardware support

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Drawing Bézier Curves

- Draw line segments or individual pixels
- Approximate the curve as a series of line segments (tessellation)
- Uniform sampling
- Adaptive sampling
- Recursive subdivision

Uniform Sampling

- Approximate curve with N straight segments
- N chosen in advance
- Evaluate

$$
\begin{aligned}
& \mathbf{x}_{i}=\mathbf{x}\left(t_{i}\right) \text { where } t_{i}=\frac{i}{N} \text { for } i=0,1, \ldots, N \\
& \mathbf{x}_{i}=\overrightarrow{\mathbf{a}} \frac{i^{3}}{N^{3}}+\overrightarrow{\mathbf{b}} \frac{i^{2}}{N^{2}}+\overrightarrow{\mathbf{c}} \frac{i}{N}+\mathbf{d}
\end{aligned}
$$

- Connect points with lines
, Too few points?
, Poor approximation: "curve" is faceted
- Too many points?

- Slow to draw too many line segments

Adaptive Sampling

- Use only as many line segments as you need
- Fewer segments where curve is mostly flat
- More segments where curve bends
- Segments never smaller than a pixel

Recursive Subdivision

- Any cubic curve segment can be expressed as a Bézier curve
- Any piece of a cubic curve is itself a cubic curve
- Therefore:
- Any Bézier curve can be broken down into smaller Bézier curves

De Casteljau Subdivision

Adaptive Subdivision Algorithm

- Use De Casteljau construction to split Bézier segment in two
- For each part
- If "flat enough": draw line segment
| Else: continue recursion
- Curve is flat enough if hull is flat enough
- Test how far the approximating control points are from a straight segment
- If less than one pixel, the hull is flat enough

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Longer curves

More Control Points

- Cubic Bézier curve limited to 4 control points
- Cubic curve can only have one inflection (point where curve changes direction of bending)
- Need more control points for more complex curves
- k-1 order Bézier curve with k control points

- Hard to control and hard to work with
- Intermediate points don't have obvious effect on shape
- Changing any control point changes the whole curve
- Want local support: each control point only influences nearby portion of curve

Piecewise Curves

- Sequence of line segments
- Piecewise linear curve

- Sequence of cubic curve segments
- Piecewise cubic curve (here piecewise Bézier)

Global Parameterization

- Given N curve segments $\mathbf{x}_{0}(t), \mathbf{x}_{1}(t), \ldots, \mathbf{x}_{N-1}(t)$
- Each is parameterized for t from 0 to I
- Define a piecewise curve
- Global parameter u from 0 to N

$$
\begin{aligned}
& \mathbf{x}(u)=\left\{\begin{array}{lc}
\mathbf{x}_{0}(u), & 0 \leq u \leq 1 \\
\mathbf{x}_{1}(u-1), & 1 \leq u \leq 2 \\
\vdots & \vdots \\
\mathbf{x}_{N-1}(u-(N-1)), & N-1 \leq u \leq N
\end{array}\right. \\
& \mathbf{x}(u)=\mathbf{x}_{i}(u-i), \text { where } i=\lfloor u\rfloor \\
& \left(\text { and } \mathbf{x}(N)=\mathbf{x}_{N-1}(1)\right)
\end{aligned}
$$

- Alternate solution: u defined from 0 to I

$$
\mathbf{x}(u)=\mathbf{x}_{i}(N u-i), \text { where } i=\lfloor N u\rfloor
$$

Piecewise Bézier curve

- Given $3 N+1$ points $\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{3 N}$
- Define N Bézier segments:

$$
\begin{aligned}
\mathbf{x}_{0}(t) & =B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}+B_{2}(t) \mathbf{p}_{2}+B_{3}(t) \mathbf{p}_{3} \\
\mathbf{x}_{1}(t) & =B_{0}(t) \mathbf{p}_{3}+B_{1}(t) \mathbf{p}_{4}+B_{2}(t) \mathbf{p}_{5}+B_{3}(t) \mathbf{p}_{6} \\
& \vdots \\
\mathbf{x}_{N-1}(t) & =B_{0}(t) \mathbf{p}_{3 N-3}+B_{1}(t) \mathbf{p}_{3 N-2}+B_{2}(t) \mathbf{p}_{3 N-1}+B_{3}(t) \mathbf{p}_{3 N}
\end{aligned}
$$

Piecewise Bézier Curve

- Parameter in $0<=u<=3 N$

$$
\mathbf{x}(u)=\left\{\begin{array}{lc}
\mathbf{x}_{0}\left(\frac{1}{3} u\right), & 0 \leq u \leq 3 \\
\mathbf{x}_{1}\left(\frac{1}{3} u-1\right), & 3 \leq u \leq 6 \\
\vdots & \vdots \\
\mathbf{x}_{N-1}\left(\frac{1}{3} u-(N-1)\right), & 3 N-3 \leq u \leq 3 N
\end{array}\right.
$$

$$
\mathbf{x}(u)=\mathbf{x}_{i}\left(\frac{1}{3} u-i\right) \text {, where } i=\left\lfloor\frac{1}{3} u\right\rfloor
$$

Parametric Continuity

- C^{0} continuity:
- Curve segments are connected
- C^{\prime} continuity:
, C^{0} \& Ist-order derivatives agree
- Curves have same tangents
- Relevant for smooth shading
- C^{2} continuity:
- $C^{1} \& 2 n d-o r d e r ~ d e r i v a t i v e s ~ a g r e e ~$
- Curves have same tangents and curvature
- Relevant for high quality reflections

$\mathrm{C}_{0} \& \mathrm{C}_{1} \& \mathrm{C}_{2}$ continuity

Piecewise Bézier Curve

- $3 N+1$ points define N Bézier segments
- $\mathbf{x}(3 i)=\mathbf{p}_{3 i}$
- C_{0} continuous by construction
- C_{1} continuous at $\mathbf{p}_{3 \mathrm{i}}$ when $\mathbf{p}_{3 \mathrm{i}}-\mathbf{p}_{3 \mathrm{i}-1}=\mathbf{p}_{3 \mathrm{i}+1}-\mathbf{p}_{3 \mathrm{i}}$
- C_{2} is harder to achieve and rarely necessary

C_{1} discontinuous

C_{1} continuous

Piecewise Bézier Curves

- Used often in 2D drawing programs
- Inconveniences
- Must have 4 or 7 or 10 or 13 or ... (I plus a multiple of 3) control points
- Some points interpolate, others approximate
- Need to impose constraints on control points to obtain C^{1} continuity
- Solutions
" User interface using "Bézier handles" to ascertain C' continuity
- Generalization to B-splines or NURBS

Bézier Handles

- Segment end points (interpolating) presented as curve control points
- Midpoints (approximating points) presented as "handles"
- Can have option to enforce C_{1} continuity

Demo: Bezier handles

- http://math.hws.edu/eck/cs424/notes20I3/canvas/bezier.ht ml

$\geqslant \mathrm{F}$

Rational Curves

- Weight causes point to "pull" more (or less)
- Can model circles with proper points and weights,
- Below: rational quadratic Bézier curve (three control points)

B-Splines

- B as in Basis-Splines
- Basis is blending function
- Difference to Bézier blending function:
- B-spline blending function can be zero outside a particular range (limits scope over which a control point has influence)
- B-Spline is defined by control points and range in which each control point is active.

NURBS

- Non Uniform Rational B-Splines
- Generalization of Bézier curves
- Non uniform:
- Combine B-Splines (limited scope of control points) and Rational Curves (weighted control points)
- Can exactly model conic sections (circles, ellipses)
- OpenGL support: see gluNurbsCurve
- Demos:
- http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2d/indes html
- http://geometrie.foretnik.net/files/NURBS-en.swf

