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Announcements
 Sunday, December 13th at 11:59pm:
 Homework Project 4 due

 Thursday, December 17th 2:30pm until Dec 18th 2:30pm
 Final Exam
 Timed 3-hour Canvas quiz, to be taken within 24h

 Sunday, December 20thth at 11:59pm:
 Homework Project 4 late deadline
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Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves
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Modeling
 Creating 3D objects
 How to construct complex surfaces?
 Goal
 Specify objects with control points
 Objects should be visually pleasing (smooth)

 Start with curves, then surfaces
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Curves
 Surface of revolution
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Curves
 Extruded/swept surfaces
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Curves
 Animation
 Provide a “track” for objects
 Use as camera path
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Video
 Bezier Curves
 http://www.youtube.com/watch?v=hlDYJNEiYvU
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Curves
 Can be generalized to surface patches
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Curve Representation
Why not specify many points along a curve and connect with lines:
 Can’t get smooth results when magnified – more points needed
 Large storage and CPU requirements

Instead: specify a curve with a small number of “control points”
 Known as a spline curve or spline.

Control 
point
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Spline: Definition
 Wikipedia:
 Term comes from flexible spline 

devices used by shipbuilders and 
draftsmen to draw smooth shapes.

 Spline consists of a long strip fixed 
in position at a number of points 
that relaxes to form a smooth curve 
passing through those points.
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http://upload.wikimedia.org/wikipedia/commons/f/fd/Spline_(PSF).png
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Interpolating Control Points
 “Interpolating” means that curve goes through all control 

points
 A.k.a. “Anchor Points”
 Seems most intuitive
 But hard to control exact behavior
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Approximating Control Points
 Curve is “influenced” by control points

 Various types
 Most common: polynomial functions
 Bézier spline (our focus)
 B-spline (generalization of Bézier spline)
 NURBS (Non Uniform Rational Basis Spline): used in CAD tools
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 A vector valued function of one variable x(t)
 Given t, compute a 3D point x=(x,y,z)
 Could be interpreted as three functions: x(t), y(t), z(t)
 Parameter t “moves a point along the curve”

Mathematical Definition

x

y

z

x(0.0) x(0.5) x(1.0)

x(t)
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Tangent Vector

 Derivative
 Vector x’:
 Points in direction of movement
 Length corresponds to speed

x’(0.0) x’(0.5) x’(1.0)

x(t)

x

y

z
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Polynomial Functions

 Linear:
(1st order)

 Quadratic:
(2nd order)

 Cubic:
(3rd order)
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Polynomial Curves in 3D
 Linear

 Evaluated as:
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Polynomial Curves in 3D
 Quadratic:

(2nd order)

 Cubic:
(3rd order)

 We usually define the curve for 0 ≤ t ≤ 1
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Control Points
 Polynomial coefficients a, b, c, d can be interpreted as 

control points
 Remember: a, b, c, d have x,y,z components each

 But: they do not intuitively describe the shape of the curve
 Goal: intuitive control points
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Weighted Average
 Based on linear interpolation (LERP)
 Weighted average between two values
 “Value” could be a number, vector, color, …

 Interpolate between points p0 and p1 with parameter t
 Defines a “curve” that is straight (first-order spline)

p0

p1

t=1
.

. 0<t<1
t=0

x(t) = Lerp t, p0 , p1( )= 1− t( )p0 + t  p1
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 Curve is based at point p0
 Add the vector, scaled by t

.



x(t) = (p1 − p0 )
vector
 

 t +    p0    
point


p0.

Linear Polynomial

p1-p0

.5(p1-p0)

.
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 Geometry matrix

 Geometric basis

 Polynomial basis

 In components

Matrix Form
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Summary

1. Grouped by points p: weighted average

2. Grouped by t: linear polynomial

3. Matrix form:
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Tangent

 Weighted average

 Polynomial

 Matrix form
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Bézier Curves
 Invented by Pierre Bézier in the 1960s for designing 

curves for the bodywork of Renault cars
 Are a higher order extension of linear interpolation
 Give intuitive control over curve with control points
 Endpoints are interpolated, intermediate points are 

approximated

p0

p1

p0

p1
p2

p0

p1

p2

p3

Linear Quadratic Cubic
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Cubic Bézier Curve
 Most commonly used case
 Defined by four control points:
 Two interpolated endpoints (points are on the curve)
 Two points control the tangents at the endpoints

 Points x on curve defined as function of parameter t

29

p0

p1

p2

p3

x(t)
•



Demo
 http://blogs.sitepointstatic.com/examples/tech/canvas-

curves/bezier-curve.html
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http://blogs.sitepointstatic.com/examples/tech/canvas-curves/bezier-curve.html


Algorithmic Construction
 Algorithmic construction

 De Casteljau algorithm, developed at Citroen in 1959, 
named after its inventor Paul de Casteljau (pronounced 
“Cast-all-’Joe”)

 Developed independently from Bézier’s work:
Bézier created the formulation using blending functions, 
Casteljau devised the recursive interpolation algorithm
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De Casteljau Algorithm
 A recursive series of linear interpolations
 Works for any order Bezier function, not only cubic

 Not very efficient to evaluate
 Other forms more commonly used

 But:
 Gives intuition about the geometry
 Useful for subdivision
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De Casteljau Algorithm

p0

p1

p2

p3

 Given:
 Four control points
 A value of t (here t≈0.25)
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De Casteljau Algorithm

p0

q0

p1

p2

p3

q2

q1

q0 (t) = Lerp t,p0 ,p1( )
q1(t) = Lerp t,p1,p2( )
q2 (t) = Lerp t,p2 ,p3( )
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De Casteljau Algorithm

q0

q2

q1

r1

r0

r0 (t) = Lerp t,q0 (t),q1(t)( )
r1(t) = Lerp t,q1(t),q2 (t)( )
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De Casteljau Algorithm

r1x

r0 •

x(t) = Lerp t,r0 (t),r1(t)( )
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x
•

p0

p1

p2

p3

De Casteljau Algorithm

Demo
 https://www.jasondavies.com/animated-bezier/
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https://www.jasondavies.com/animated-bezier/


x = Lerp t,r0 ,r1( )
r0 = Lerp t,q0 ,q1( )
r1 = Lerp t,q1,q2( )

q0 = Lerp t,p0 ,p1( )
q1 = Lerp t,p1,p2( )
q2 = Lerp t,p2 ,p3( )

p0

p1

p2

p3
         p1

q0

r0 p2

x q1

r1 p3

q2

p4

Recursive Linear Interpolation
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Expand the LERPs
q0 (t) = Lerp t,p0 ,p1( )= 1− t( )p0 + tp1

q1(t) = Lerp t,p1,p2( )= 1− t( )p1 + tp2

q2 (t) = Lerp t,p2 ,p3( )= 1− t( )p2 + tp3

r0 (t) = Lerp t,q0 (t),q1(t)( )= 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )
r1(t) = Lerp t,q1(t),q2 (t)( )= 1− t( ) 1− t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )

x(t) = Lerp t,r0 (t),r1(t)( )
= 1− t( ) 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )( )
       +t 1− t( ) 1− t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )( )
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

x(t) = 1− t( ) 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )( )
+t 1− t( ) 1− t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )( )

x(t) = 1− t( )3 p0 + 3 1− t( )2 tp1 + 3 1− t( )t 2p2 + t 3p3

x(t) = −t 3 + 3t 2 − 3t +1( )
B0 (t )  

p0 + 3t 3 − 6t 2 + 3t( )
B1 (t )  

p1

+ −3t 3 + 3t 2( )
B2 (t )

  
p2 + t 3( )

B3 (t )


p3

Weighted Average of Control Points
 Regroup for p:
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 Weights Bi(t) add up to 1 for any value of t

                    x(t) = B0 t( )p0 + B1 t( )p1 + B2 t( )p2 + B3 t( )p3

The cubic Bernstein polynomials :
                    B0 t( )= −t 3 + 3t 2 − 3t +1

                    B1 t( )= 3t 3 − 6t 2 + 3t

                    B2 t( )= −3t 3 + 3t 2

                     B3 t( )= t 3                        

                 Bi (t) = 1∑

Cubic Bernstein Polynomials
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General Bernstein Polynomials
B0

1 t( )= −t +1      B0
2 t( )= t 2 − 2t +1      B0

3 t( )= −t 3 + 3t 2 − 3t +1
B1

1 t( )= t B1
2 t( )= −2t 2 + 2t B1

3 t( )= 3t 3 − 6t 2 + 3t
B2

2 t( )= t 2 B2
3 t( )= −3t 3 + 3t 2

B3
3 t( )= t 3

Bi
n t( )=

n
i






1− t( )n− i t( )i
n
i





=

n!
i! n − i( )!

Bi
n t( )∑ = 1 n! = factorial of n

(n+1)! = n! x (n+1)
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Any order Bézier Curves
 nth-order Bernstein polynomials form nth-order 

Bézier curves

Bi
n t( )=

n
i






1− t( )n− i t( )i

x t( )= Bi
n t( )pi

i=0

n

∑
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Demo: Bezier curves of multiple orders
 http://www.ibiblio.org/e-notes/Splines/bezier.html
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http://www.ibiblio.org/e-notes/Splines/bezier.html


Useful Bézier Curve Properties

 Convex Hull property
 Affine Invariance
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p0

p1

p2

p3

Convex Hull Property
 A Bézier curve is always inside the convex hull
 Makes curve predictable
 Allows culling, intersection testing, adaptive tessellation
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Affine Invariance
Transforming Bézier curves
 Two ways to transform:
 First transform control points, then compute spline points
 First compute spline points, then transform them

 Results are identical
 Invariant under affine transformations
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 Good for fast evaluation
 Precompute constant coefficients (a,b,c,d) 

 Not much geometric intuition

Start with Bernstein form:

       x(t) = −t 3 + 3t 2 − 3t +1( )p0 + 3t 3 − 6t 2 + 3t( )p1 + −3t 3 + 3t 2( )p2 + t 3( )p3

Regroup into coefficients of t :
x(t) = −p0 + 3p1 − 3p2 + p3( )t 3 + 3p0 − 6p1 + 3p2( )t 2 + −3p0 + 3p1( )t + p0( )1

x(t) = at 3 + bt 2 + ct + d

a = −p0 + 3p1 − 3p2 + p3( )
b = 3p0 − 6p1 + 3p2( )
c = −3p0 + 3p1( )
d = p0( )

Cubic Polynomial Form
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

x(t) = a

b c d 

t 3

t 2

t
1



















a = −p0 + 3p1 − 3p2 + p3( )

b = 3p0 − 6p1 + 3p2( )
c = −3p0 + 3p1( )
d = p0( )

x(t) = p0 p1 p2 p3[ ]

GBez

  

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



















BBez

  

t 3

t 2

t
1



















T


Cubic Matrix Form
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 Other types of cubic splines use different basis matrices
 Efficient evaluation
 Pre-compute C
 Use existing 4x4 matrix hardware support

Matrix Form
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Drawing Bézier Curves
 Draw line segments or individual pixels
 Approximate the curve as a series of line segments 

(tessellation)
 Uniform sampling
 Adaptive sampling
 Recursive subdivision
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Uniform Sampling
 Approximate curve with N straight segments
 N chosen in advance
 Evaluate

 Connect points with lines

 Too few points?
 Poor approximation:  “curve” is faceted

 Too many points?
 Slow to draw too many line segments



xi = x ti( ) where ti =
i
N

 for i = 0, 1,, N

xi =
a i3

N 3 +

b i2

N 2 +
c i

N
+ d

x4

x0

x1

x2

x3

x(t)
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Adaptive Sampling
 Use only as many line segments as you need
 Fewer segments where curve is mostly flat
 More segments where curve bends
 Segments never smaller than a pixel

x(t)

54



Recursive Subdivision
 Any cubic curve segment can be expressed as a 

Bézier curve
 Any piece of a cubic curve is itself a cubic curve
 Therefore:
 Any Bézier curve can be broken down into smaller Bézier

curves
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 De Casteljau construction points
are the control points of two Bézier
sub-segments

De Casteljau Subdivision

xp0

p1

p2

p3

q0
r0

r1

q2
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Adaptive Subdivision Algorithm
 Use De Casteljau construction to split Bézier segment in 

two
 For each part
 If “flat enough”: draw line segment
 Else: continue recursion

 Curve is flat enough if hull is flat enough
 Test how far the approximating control points are from a straight 

segment
 If less than one pixel, the hull is flat enough
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More Control Points
 Cubic Bézier curve limited to 4 control points
 Cubic curve can only have one inflection (point where curve changes 

direction of bending)
 Need more control points for more complex curves

 k-1 order Bézier curve with k control points

 Hard to control and hard to work with
 Intermediate points don’t have obvious effect on shape
 Changing any control point changes the whole curve
 Want local support: each control point only influences nearby portion of 

curve
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Piecewise Curves
 Sequence of line segments
 Piecewise linear curve

 Sequence of cubic curve segments
 Piecewise cubic curve (here piecewise Bézier)
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Global Parameterization
 Given N curve segments x0(t), x1(t), …, xN-1(t)
 Each is parameterized for t from 0 to 1
 Define a piecewise curve
 Global parameter u from 0 to N

 Alternate solution: u defined from 0 to 1


x(u) =

x0 (u), 0 ≤ u ≤ 1
x1(u −1), 1 ≤ u ≤ 2
 

xN −1(u − N −1( )),    N −1 ≤ u ≤ N











x(u) = xi (u − i),  where i = u     (and x(N ) = xN −1(1))

x(u) = xi (Nu − i),  where i = Nu 
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Piecewise Bézier curve



• Given 3N +1 points p0 ,p1,,p3N

• Define N Bézier segments:
x0 (t) = B0 (t)p0 + B1(t)p1 + B2 (t)p2 + B3(t)p3

x1(t) = B0 (t)p3 + B1(t)p4 + B2 (t)p5 + B3(t)p6



           xN −1(t) = B0 (t)p3N −3 + B1(t)p3N −2 + B2 (t)p3N −1 + B3(t)p3N

x0(t)

x1(t)

x2(t)

x3(t)

p0

p1
p2

p3

p4
p5

p6

p7 p8

p9

p10 p11

p12
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Piecewise Bézier Curve



           x(u) =

x0 ( 1
3 u), 0 ≤ u ≤ 3

x1( 1
3 u −1), 3 ≤ u ≤ 6

 

xN −1( 1
3 u − (N −1)), 3N − 3 ≤ u ≤ 3N











           x(u) = xi
1
3 u − i( ), where i = 1

3 u 

 Parameter in 0<=u<=3N

x0(t) x1(t)

x2(t) x3(t)

x(3.5)

x(8.75)

u=0
u=12
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Parametric Continuity
 C0 continuity:

 Curve segments are connected 
 C1 continuity:

 C0 & 1st-order derivatives agree
 Curves have same tangents
 Relevant for smooth shading

 C2 continuity:
 C1 & 2nd-order derivatives agree
 Curves have same tangents and curvature
 Relevant for high quality reflections



 3N+1 points define N Bézier segments
 x(3i)=p3i
 C0 continuous by construction 
 C1 continuous at p3i when p3i - p3i-1 = p3i+1 - p3i
 C2 is harder to achieve and rarely necessary

Piecewise Bézier Curve

p0

p1

p2

P3
p6

p5

p4

C1 continuous

p0

P3

p2

p1

p4

p5

p6

C1 discontinuous
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Piecewise Bézier Curves
 Used often in 2D drawing programs
 Inconveniences
 Must have 4 or 7 or 10 or 13 or … (1 plus a multiple of 3) 

control points
 Some points interpolate, others approximate
 Need to impose constraints on control points to obtain C1 

continuity
 Solutions
 User interface using “Bézier handles” to ascertain C1 continuity
 Generalization to B-splines or NURBS
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Bézier Handles

 Segment end points 
(interpolating) 
presented as curve 
control points

 Midpoints 
(approximating 
points) presented as 
“handles”

 Can have option to 
enforce C1 continuity

Adobe Illustrator
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Demo: Bezier handles
 http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.ht

ml
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Rational Curves
 Weight causes point to “pull” more (or less)
 Can model circles with proper points and weights,
 Below: rational quadratic Bézier curve (three control points)

pull less
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B-Splines
 B as in Basis-Splines
 Basis is blending function
 Difference to Bézier blending function:
 B-spline blending function can be zero outside a particular 

range (limits scope over which a control point has influence)

 B-Spline is defined by control points and range in which 
each control point is active.
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NURBS
 Non Uniform Rational B-Splines
 Generalization of Bézier curves
 Non uniform: 
 Combine B-Splines (limited scope of control points) and 

Rational Curves (weighted control points)
 Can exactly model conic sections (circles, ellipses)
 OpenGL support:  see gluNurbsCurve

 Demos:
 http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2d/index.

html
 http://geometrie.foretnik.net/files/NURBS-en.swf
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