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Announcements

� Project 3 due this Friday at 1pm

� Grading starts at 12:15 in CSE labs 260+270
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Lecture Overview

� Barycentric Coordinates
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Color Interpolation

� What if a triangle’s vertex colors are different?

� Need to interpolate across triangle

� How to calculate interpolation weights?
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Source: efg’s computer lab



Implicit 2D Lines

� Given two 2D points a, b

� Define function            such that
if p lies on the line defined by a, b
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Implicit 2D Lines

� Point p lies on the line, if p-a is perpendicular to the 
normal n of the line

� Use dot product to determine on which side of the 
line p lies. If f(p)>0, p is on same side as normal, if 
f(p)<0 p is on opposite side. If dot product is 0, p lies 
on the line.
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n=(ay-by, bx-ax)

p-a=(px-ax, py-ay)



Barycentric Coordinates

� Coordinates for 2D plane defined by
triangle vertices a, b, c

� Any point p in the plane defined by a, b, c is
p = a + β (b - a) + γ (c - a)

� Solved for a, b, c: 
p= (1 – β – γ ) a + β b + γ c

� We define α = 1 – β – γ
� p = α a + β b + γ c

� α, β, γ are called barycentric coordinates

� If we imagine masses equal to α, β, γ in the locations of the 
vertices of the triangle, the center of mass (the Barycenter) is 
then p. This is the origin of the term “barycentric” (introduced 
1827 by Möbius)
7



Barycentric Interpolation

� Interpolate values across triangles, e.g., colors

� Done by linear interpolation
on triangle:

� Works well at common edges of neighboring triangles
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Barycentric Coordinates

� Demo:
� http://adrianboeing.blogspot.com/2010/01/barycentric-coordinates.html
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Lecture Overview

� Rendering Pipeline
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Rendering Pipeline

Scene data

Image

� Hardware and software which 
draws 3D scenes on the screen

� Consists of several stages
� Simplified version here

� Most operations performed by 
specialized hardware (GPU)

� Access to hardware through 
low-level 3D API (OpenGL, 
DirectX)

� All scene data flows through 
the pipeline at least once for 
each frame

Rendering

pipeline
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Textures, lights, etc.

� Geometry

� Vertices and how they are 
connected

� Triangles, lines, points, triangle 
strips

� Attributes such as color

� Specified in object coordinates

� Processed by the rendering 
pipeline one-by-one
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Transform object to camera 
coordinates

� Specified by 
GL_MODELVIEW matrix 
in OpenGL

� User computes 
GL_MODELVIEW matrix 
as discussed

MODELVIEW

matrix
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Look up light sources

� Compute color for each 
vertex
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Project 3D vertices to 2D 
image positions

� GL_PROJECTION matrix
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Draw primitives (triangles, 
lines, etc.)

� Determine what is visible
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image � Pixel colors
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Rendering Engine

Scene data

Image

Rendering Engine:

� Additional software layer 
encapsulating low-level API

� Higher level functionality than 
OpenGL

� Platform independent

� Layered software architecture 
common in industry

� Game engines

� Graphics middleware

Rendering

pipeline
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Lecture Overview

� Rasterization

� Visibility

� Shading
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Rendering Pipeline

Modeling and Viewing

Transformation

Shading

Projection

Rasteriztion,

Visibility

Primitives

Image

• Scan conversion and 

rasterization are synonyms

• One of the main operations 

performed by GPU

• Draw triangles, lines, points 

(squares)

• Focus on triangles in this 

lecture
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Rasterization
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Rasterization

� Given vertices in pixel coordinates

World space

Camera space

Clip space

Image space

Pixel coordinates
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Rasterization

� How many pixels can a modern graphics processor draw 
per second?

23



Rasterization

� How many pixels can a modern graphics processor draw 
per second?

� NVidia GeForce GTX 780

� 160 billion pixels per second

� Multiple of what the fastest CPU could do

24



Rasterization

� Many different algorithms

� Old style

� Rasterize edges first

25



Rasterization

� Many different algorithms

� Example:

� Rasterize edges first

� Fill the spans (scan lines)

� Disadvantage:

� Requires clipping
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Source: http://www.arcsynthesis.org



Rasterization

� GPU rasterization today based on “Homogeneous 
Rasterization”
http://www.ece.unm.edu/course/ece595/docs/olano.pdf

Olano, Marc and Trey Greer, "Triangle Scan Conversion Using 2D Homogeneous Coordinates", Proceedings 
of the 1997 SIGGRAPH/EurographicsWorkshop on Graphics Hardware (Los Angeles, CA, August 2-4, 
1997), ACM SIGGRAPH, New York, 1995.
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Rasterization

� Given vertices in pixel coordinates

World space

Camera space

Clip space

Image space

Pixel coordinates
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Rasterization

� Simple algorithm
compute bbox 

clip bbox to screen limits

for all pixels [x,y] in bbox

compute barycentric coordinates alpha, beta, gamma

if 0<alpha,beta,gamma<1 //pixel in triangle

image[x,y]=triangleColor

� Bounding box clipping trivial
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Rasterization

� So far, we compute barycentric coordinates of many 
useless pixels

� How can this be improved?
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Rasterization

Hierarchy

• If block of pixels is outside triangle, no need to test 

individual pixels

• Can have several levels, usually two-level

• Find right granularity and size of blocks for optimal 

performance
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2D Triangle-Rectangle Intersection

� If one of the following tests returns true, the triangle 
intersects the rectangle:

� Test if any of the triangle’s vertices are inside the rectangle 
(e.g., by comparing the x/y coordinates to the min/max x/y 
coordinates of the rectangle)

� Test if one of the quad’s vertices is inside the triangle (e.g., 
using barycentric coordinates)

� Intersect all edges of the triangle with all edges of the rectangle
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Lecture Overview

� Rasterization

� Visibility

� Shading
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Visibility

• At each pixel, we need to 

determine which triangle

is visible
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Painter’s Algorithm

� Paint from back to front

� Every new pixel always paints over previous pixel in frame 
buffer

� Need to sort geometry according to depth

� May need to split triangles if they intersect

� Outdated algorithm, created when memory was 
expensive
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Z-Buffering

� Store z-value for each pixel

� Depth test

� During rasterization, compare stored value to new value

� Update pixel only if new value is smaller
setpixel(int x, int y, color c, float z)

if(z<zbuffer(x,y)) then

zbuffer(x,y) = z

color(x,y) = c

� z-buffer is dedicated memory reserved for GPU 
(graphics memory)

� Depth test is performed by GPU
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Z-Buffering in OpenGL

� In your application:

� Ask for a depth buffer when you create your window.

� Place a call to glEnable (GL_DEPTH_TEST) in your program's 
initialization routine.

� Ensure that your zNear and zFar clipping planes are set 
correctly (in glOrtho, glFrustum or gluPerspective) and in a 
way that provides adequate depth buffer precision.

� Pass GL_DEPTH_BUFFER_BIT as a parameter to glClear.
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Z-Buffering

� Problem: translucent geometry

� Storage of multiple depth and color values per pixel (not 
practical in real-time graphics)

� Or back to front rendering of translucent geometry, after 
rendering opaque geometry

� Does not always work correctly: programmer has to weight rendering 
correctness against computational effort
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Lecture Overview

� Rasterization

� Visibility

� Shading
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Shading

� Compute interaction of light with surfaces

� Requires simulation of physics

� “Global illumination”

� Multiple bounces of light

� Computationally expensive, minutes per image

� Used in movies, architectural design, etc.
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Global Illumination
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Interactive Applications

� No physics-based simulation

� Simplified models

� Reproduce perceptually most important effects

� Local illumination

� Only one bounce of light between light source and viewer

One bounce of light
Surface
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Scan conversion,

visibility

Scene data

Image

• Position object in 3D

• Map triangles to 2D

• Draw triangles

– Per pixel shading

• Determine colors of vertices

– Per vertex shading
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Lecture Overview

� OpenGL’s local shading model
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Local Illumination

� What gives a material its color?

� How is light reflected by a
� Mirror

� White sheet of paper

� Blue sheet of paper

� Glossy metal
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Local Illumination

� Model reflection of light at surfaces
� Assumption: no subsurface scattering

� Bidirectional reflectance distribution function (BRDF)
� Given light direction, viewing direction, how much light is 
reflected towards the viewer

� For any pair of light/viewing directions!
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Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular
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Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular
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Diffuse Reflection

� Ideal diffuse material reflects light equally in all directions

� View-independent

� Matte, not shiny materials

� Paper

� Unfinished wood

� Unpolished stone
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Diffuse Reflection

� Beam of parallel rays shining on a surface

� Area covered by beam varies with the angle between the beam and the 
normal

� The larger the area, the less incident light per area

� Incident light per unit area is proportional to the cosine of the angle 
between the normal and the light rays

� Object darkens as normal turns away from light

� Lambert’s cosine law (Johann Heinrich Lambert, 1760)

� Diffuse surfaces are also called Lambertian surfaces

nnn
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Diffuse Reflection

� Given

� Unit surface normal n

� Unit light direction L

� Material diffuse reflectance (material color) kd
� Light color (intensity) cl

� Diffuse color cd is:

Proportional to cosine

between normal and light
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Diffuse Reflection

Notes

� Parameters kd, cl are r,g,b vectors

� Need to compute r,g,b values of diffuse color cd
separately

� Parameters in this model have no precise physical 
meaning

� cl: strength, color of light source

� kd: fraction of reflected light, material color
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Diffuse Reflection

� Provides visual cues

� Surface curvature

� Depth variation

Lambertian (diffuse) sphere under different lighting directions
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OpenGL

� Lights (glLight*)

� Values for light:

� Definition: (0,0,0) is black, (1,1,1) is white

� OpenGL 

� Values for diffuse reflection

� Fraction of reflected light:

� Consult OpenGL Programming Guide (Red Book)

� See course web site
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Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular
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Specular Reflection

� Shiny surfaces

� Polished metal

� Glossy car finish

� Plastics

� Specular highlight

� Blurred reflection of the 
light source

� Position of highlight 
depends on viewing 
direction

Specular highlight
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Specular Reflection

� Ideal specular reflection is mirror reflection

� Perfectly smooth surface

� Incoming light ray is bounced in single direction

� Angle of incidence equals angle of reflection
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Law of Reflection

� Angle of incidence equals angle of reflection
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Specular Reflection

� Many materials are not perfect mirrors

� Glossy materials

Glossy teapot
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Glossy Materials

� Assume surface composed of small mirrors with random 
orientation (micro-facets)

� Smooth surfaces
� Micro-facet normals close to surface normal
� Sharp highlights

� Rough surfaces
� Micro-facet normals vary strongly
� Blurry highlight

Polished

Smooth

Rough

Very rough
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Glossy Surfaces

� Expect most light to be reflected in mirror direction

� Because of micro-facets, some light is reflected slightly off 
ideal reflection direction

� Reflection

� Brightest when view vector is aligned with reflection

� Decreases as angle between view vector and reflection 
direction increases
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Phong Shading Model

� Developed by Bui Tuong Phong in1973

� Specular reflectance coefficient ks
� Phong exponent p

� Greater p means smaller (sharper) highlight
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Phong Shading Model
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Blinn Shading Model (Jim Blinn, 1977)

� Modification of Phong Shading Model

� Defines unit halfway vector

� Halfway vector represents normal of micro-facet that 
would lead to mirror reflection to the eye 
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Blinn Shading Model

� The larger the angle between micro-facet orientation and 
normal, the less likely

� Use cosine of angle between them

� Shininess parameter s

� Very similar to Phong Model
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Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular
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Ambient Light

� In real world, light is bounced all around scene

� Could use global illumination techniques to simulate

� Simple approximation
� Add constant ambient light at each point: kaca
� Ambient light color: ca
� Ambient reflection coefficient: ka

� Areas with no direct illumination are not completely dark
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Complete Blinn-Phong Shading Model

� Blinn-Phong model with several light sources I

� All colors and reflection coefficients are vectors with 3 
components for red, green, blue

ambientdiffuse specular
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Lecture Overview

� Culling
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Culling

� Goal: 
Discard geometry that does not need to be drawn to 
speed up rendering

� Types of culling:
� View frustum culling

� Occlusion culling

� Small object culling

� Backface culling

� Degenerate culling
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View Frustum Culling

� Triangles outside of view frustum are off-screen

� Done on canonical view volume
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Images: SGI OpenGL Optimizer Programmer's Guide



Videos

� Rendering Optimizations - Frustum Culling 

� http://www.youtube.com/watch?v=kvVHp9wMAO8

� View Frustum Culling Demo 

� http://www.youtube.com/watch?v=bJrYTBGpwic
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Bounding Box

� How to cull objects consisting of may polygons?

� Cull bounding box

� Rectangular box, parallel to object space coordinate planes

� Box is smallest box containing the entire object
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Image: SGI OpenGL Optimizer Programmer's Guide



Occlusion Culling

� Geometry hidden behind occluder cannot be seen

� Many complex algorithms exist to identify occluded geometry
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Images: SGI OpenGL Optimizer Programmer's Guide



Video

� Umbra 3 Occlusion Culling explained 

� http://www.youtube.com/watch?v=5h4QgDBwQhc
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Small Object Culling

� Object projects to less than a specified size

� Cull objects whose screen-space bounding box is less than a 
threshold number of pixels
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Backface Culling

� Consider triangles as “one-sided”, i.e., only visible from 
the “front”

� Closed objects

� If the “back” of the triangle is facing the camera, it is not visible

� Gain efficiency by not drawing it (culling)

� Roughly 50% of triangles in a scene are back facing
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Backface Culling

� Convention: 
Triangle is front facing if vertices are ordered 
counterclockwise

� OpenGL allows one- or two-sided triangles
� One-sided triangles:

glEnable(GL_CULL_FACE); glCullFace(GL_BACK)
� Two-sided triangles (no backface culling):

glDisable(GL_CULL_FACE)

p0

p1

p2

p0

p1

p2
Front-facing Back-facing
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Backface Culling

� Compute triangle normal after projection (homogeneous 
division)

� Third component of n negative: front-facing, otherwise 
back-facing

� Remember: projection matrix is such that homogeneous 
division flips sign of third component
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Degenerate Culling

� Degenerate triangle has no area

� Vertices lie in a straight line

� Vertices at the exact same place

� Normal n=0
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Source: Computer Methods in Applied Mechanics 

and Engineering, Volume 194, Issues 48–49



Rendering Pipeline

Modeling and Viewing

Transformation

Shading

Projection

Scan conversion,

visibility

Primitives

Image

Culling, Clipping

• Discard geometry that 

will not be visible
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