
CSE 167:

Introduction to Computer Graphics

Lecture #5: Rasterization

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Spring Quarter 2015

Announcements

� Project 3 due this Friday at 1pm

� Grading starts at 12:15 in CSE labs 260+270

2

Lecture Overview

� Barycentric Coordinates

3

Color Interpolation

� What if a triangle’s vertex colors are different?

� Need to interpolate across triangle

� How to calculate interpolation weights?

4

Source: efg’s computer lab

Implicit 2D Lines

� Given two 2D points a, b

� Define function such that
if p lies on the line defined by a, b

5

Implicit 2D Lines

� Point p lies on the line, if p-a is perpendicular to the
normal n of the line

� Use dot product to determine on which side of the
line p lies. If f(p)>0, p is on same side as normal, if
f(p)<0 p is on opposite side. If dot product is 0, p lies
on the line.

6

n=(ay-by, bx-ax)

p-a=(px-ax, py-ay)

Barycentric Coordinates

� Coordinates for 2D plane defined by
triangle vertices a, b, c

� Any point p in the plane defined by a, b, c is
p = a + β (b - a) + γ (c - a)

� Solved for a, b, c:
p= (1 – β – γ) a + β b + γ c

� We define α = 1 – β – γ
� p = α a + β b + γ c

� α, β, γ are called barycentric coordinates

� If we imagine masses equal to α, β, γ in the locations of the
vertices of the triangle, the center of mass (the Barycenter) is
then p. This is the origin of the term “barycentric” (introduced
1827 by Möbius)
7

Barycentric Interpolation

� Interpolate values across triangles, e.g., colors

� Done by linear interpolation
on triangle:

� Works well at common edges of neighboring triangles

8

Barycentric Coordinates

� Demo:
� http://adrianboeing.blogspot.com/2010/01/barycentric-coordinates.html

9

Lecture Overview

� Rendering Pipeline

10

Rendering Pipeline

Scene data

Image

� Hardware and software which
draws 3D scenes on the screen

� Consists of several stages
� Simplified version here

� Most operations performed by
specialized hardware (GPU)

� Access to hardware through
low-level 3D API (OpenGL,
DirectX)

� All scene data flows through
the pipeline at least once for
each frame

Rendering

pipeline

11

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Textures, lights, etc.

� Geometry

� Vertices and how they are
connected

� Triangles, lines, points, triangle
strips

� Attributes such as color

� Specified in object coordinates

� Processed by the rendering
pipeline one-by-one

12

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Transform object to camera
coordinates

� Specified by
GL_MODELVIEW matrix
in OpenGL

� User computes
GL_MODELVIEW matrix
as discussed

MODELVIEW

matrix

13

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Look up light sources

� Compute color for each
vertex

14

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Project 3D vertices to 2D
image positions

� GL_PROJECTION matrix

15

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Draw primitives (triangles,
lines, etc.)

� Determine what is visible

16

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image � Pixel colors
17

Rendering Engine

Scene data

Image

Rendering Engine:

� Additional software layer
encapsulating low-level API

� Higher level functionality than
OpenGL

� Platform independent

� Layered software architecture
common in industry

� Game engines

� Graphics middleware

Rendering

pipeline

18

Lecture Overview

� Rasterization

� Visibility

� Shading

19

Rendering Pipeline

Modeling and Viewing

Transformation

Shading

Projection

Rasteriztion,

Visibility

Primitives

Image

• Scan conversion and

rasterization are synonyms

• One of the main operations

performed by GPU

• Draw triangles, lines, points

(squares)

• Focus on triangles in this

lecture
20

Rasterization

21

Rasterization

� Given vertices in pixel coordinates

World space

Camera space

Clip space

Image space

Pixel coordinates

22

Rasterization

� How many pixels can a modern graphics processor draw
per second?

23

Rasterization

� How many pixels can a modern graphics processor draw
per second?

� NVidia GeForce GTX 780

� 160 billion pixels per second

� Multiple of what the fastest CPU could do

24

Rasterization

� Many different algorithms

� Old style

� Rasterize edges first

25

Rasterization

� Many different algorithms

� Example:

� Rasterize edges first

� Fill the spans (scan lines)

� Disadvantage:

� Requires clipping

26

Source: http://www.arcsynthesis.org

Rasterization

� GPU rasterization today based on “Homogeneous
Rasterization”
http://www.ece.unm.edu/course/ece595/docs/olano.pdf

Olano, Marc and Trey Greer, "Triangle Scan Conversion Using 2D Homogeneous Coordinates", Proceedings
of the 1997 SIGGRAPH/EurographicsWorkshop on Graphics Hardware (Los Angeles, CA, August 2-4,
1997), ACM SIGGRAPH, New York, 1995.

27

Rasterization

� Given vertices in pixel coordinates

World space

Camera space

Clip space

Image space

Pixel coordinates

28

Rasterization

� Simple algorithm
compute bbox

clip bbox to screen limits

for all pixels [x,y] in bbox

compute barycentric coordinates alpha, beta, gamma

if 0<alpha,beta,gamma<1 //pixel in triangle

image[x,y]=triangleColor

� Bounding box clipping trivial

29

Rasterization

� So far, we compute barycentric coordinates of many
useless pixels

� How can this be improved?

30

Rasterization

Hierarchy

• If block of pixels is outside triangle, no need to test

individual pixels

• Can have several levels, usually two-level

• Find right granularity and size of blocks for optimal

performance

31

2D Triangle-Rectangle Intersection

� If one of the following tests returns true, the triangle
intersects the rectangle:

� Test if any of the triangle’s vertices are inside the rectangle
(e.g., by comparing the x/y coordinates to the min/max x/y
coordinates of the rectangle)

� Test if one of the quad’s vertices is inside the triangle (e.g.,
using barycentric coordinates)

� Intersect all edges of the triangle with all edges of the rectangle

32

Lecture Overview

� Rasterization

� Visibility

� Shading

33

Visibility

• At each pixel, we need to

determine which triangle

is visible

34

Painter’s Algorithm

� Paint from back to front

� Every new pixel always paints over previous pixel in frame
buffer

� Need to sort geometry according to depth

� May need to split triangles if they intersect

� Outdated algorithm, created when memory was
expensive

35

Z-Buffering

� Store z-value for each pixel

� Depth test

� During rasterization, compare stored value to new value

� Update pixel only if new value is smaller
setpixel(int x, int y, color c, float z)

if(z<zbuffer(x,y)) then

zbuffer(x,y) = z

color(x,y) = c

� z-buffer is dedicated memory reserved for GPU
(graphics memory)

� Depth test is performed by GPU

36

Z-Buffering in OpenGL

� In your application:

� Ask for a depth buffer when you create your window.

� Place a call to glEnable (GL_DEPTH_TEST) in your program's
initialization routine.

� Ensure that your zNear and zFar clipping planes are set
correctly (in glOrtho, glFrustum or gluPerspective) and in a
way that provides adequate depth buffer precision.

� Pass GL_DEPTH_BUFFER_BIT as a parameter to glClear.

37

Z-Buffering

� Problem: translucent geometry

� Storage of multiple depth and color values per pixel (not
practical in real-time graphics)

� Or back to front rendering of translucent geometry, after
rendering opaque geometry

� Does not always work correctly: programmer has to weight rendering
correctness against computational effort

38

Lecture Overview

� Rasterization

� Visibility

� Shading

39

Shading

� Compute interaction of light with surfaces

� Requires simulation of physics

� “Global illumination”

� Multiple bounces of light

� Computationally expensive, minutes per image

� Used in movies, architectural design, etc.

40

Global Illumination

41

Interactive Applications

� No physics-based simulation

� Simplified models

� Reproduce perceptually most important effects

� Local illumination

� Only one bounce of light between light source and viewer

One bounce of light
Surface

42

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Scan conversion,

visibility

Scene data

Image

• Position object in 3D

• Map triangles to 2D

• Draw triangles

– Per pixel shading

• Determine colors of vertices

– Per vertex shading

43

Lecture Overview

� OpenGL’s local shading model

44

Local Illumination

� What gives a material its color?

� How is light reflected by a
� Mirror

� White sheet of paper

� Blue sheet of paper

� Glossy metal

45

Local Illumination

� Model reflection of light at surfaces
� Assumption: no subsurface scattering

� Bidirectional reflectance distribution function (BRDF)
� Given light direction, viewing direction, how much light is
reflected towards the viewer

� For any pair of light/viewing directions!

46

Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular

47

Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular

48

Diffuse Reflection

� Ideal diffuse material reflects light equally in all directions

� View-independent

� Matte, not shiny materials

� Paper

� Unfinished wood

� Unpolished stone

49

Diffuse Reflection

� Beam of parallel rays shining on a surface

� Area covered by beam varies with the angle between the beam and the
normal

� The larger the area, the less incident light per area

� Incident light per unit area is proportional to the cosine of the angle
between the normal and the light rays

� Object darkens as normal turns away from light

� Lambert’s cosine law (Johann Heinrich Lambert, 1760)

� Diffuse surfaces are also called Lambertian surfaces

nnn

50

Diffuse Reflection

� Given

� Unit surface normal n

� Unit light direction L

� Material diffuse reflectance (material color) kd
� Light color (intensity) cl

� Diffuse color cd is:

Proportional to cosine

between normal and light

51

Diffuse Reflection

Notes

� Parameters kd, cl are r,g,b vectors

� Need to compute r,g,b values of diffuse color cd
separately

� Parameters in this model have no precise physical
meaning

� cl: strength, color of light source

� kd: fraction of reflected light, material color

52

Diffuse Reflection

� Provides visual cues

� Surface curvature

� Depth variation

Lambertian (diffuse) sphere under different lighting directions

53

OpenGL

� Lights (glLight*)

� Values for light:

� Definition: (0,0,0) is black, (1,1,1) is white

� OpenGL

� Values for diffuse reflection

� Fraction of reflected light:

� Consult OpenGL Programming Guide (Red Book)

� See course web site

54

Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular

55

Specular Reflection

� Shiny surfaces

� Polished metal

� Glossy car finish

� Plastics

� Specular highlight

� Blurred reflection of the
light source

� Position of highlight
depends on viewing
direction

Specular highlight

56

Specular Reflection

� Ideal specular reflection is mirror reflection

� Perfectly smooth surface

� Incoming light ray is bounced in single direction

� Angle of incidence equals angle of reflection

57

Law of Reflection

� Angle of incidence equals angle of reflection

58

Specular Reflection

� Many materials are not perfect mirrors

� Glossy materials

Glossy teapot

59

Glossy Materials

� Assume surface composed of small mirrors with random
orientation (micro-facets)

� Smooth surfaces
� Micro-facet normals close to surface normal
� Sharp highlights

� Rough surfaces
� Micro-facet normals vary strongly
� Blurry highlight

Polished

Smooth

Rough

Very rough
60

Glossy Surfaces

� Expect most light to be reflected in mirror direction

� Because of micro-facets, some light is reflected slightly off
ideal reflection direction

� Reflection

� Brightest when view vector is aligned with reflection

� Decreases as angle between view vector and reflection
direction increases

61

Phong Shading Model

� Developed by Bui Tuong Phong in1973

� Specular reflectance coefficient ks
� Phong exponent p

� Greater p means smaller (sharper) highlight

62

Phong Shading Model

63

Blinn Shading Model (Jim Blinn, 1977)

� Modification of Phong Shading Model

� Defines unit halfway vector

� Halfway vector represents normal of micro-facet that
would lead to mirror reflection to the eye

64

Blinn Shading Model

� The larger the angle between micro-facet orientation and
normal, the less likely

� Use cosine of angle between them

� Shininess parameter s

� Very similar to Phong Model

65

Local Illumination

Simplified model

� Sum of 3 components

� Covers a large class of real surfaces

ambientdiffuse specular

66

Ambient Light

� In real world, light is bounced all around scene

� Could use global illumination techniques to simulate

� Simple approximation
� Add constant ambient light at each point: kaca
� Ambient light color: ca
� Ambient reflection coefficient: ka

� Areas with no direct illumination are not completely dark

67

Complete Blinn-Phong Shading Model

� Blinn-Phong model with several light sources I

� All colors and reflection coefficients are vectors with 3
components for red, green, blue

ambientdiffuse specular

68

Lecture Overview

� Culling

69

Culling

� Goal:
Discard geometry that does not need to be drawn to
speed up rendering

� Types of culling:
� View frustum culling

� Occlusion culling

� Small object culling

� Backface culling

� Degenerate culling

70

View Frustum Culling

� Triangles outside of view frustum are off-screen

� Done on canonical view volume

71

Images: SGI OpenGL Optimizer Programmer's Guide

Videos

� Rendering Optimizations - Frustum Culling

� http://www.youtube.com/watch?v=kvVHp9wMAO8

� View Frustum Culling Demo

� http://www.youtube.com/watch?v=bJrYTBGpwic

72

Bounding Box

� How to cull objects consisting of may polygons?

� Cull bounding box

� Rectangular box, parallel to object space coordinate planes

� Box is smallest box containing the entire object

73

Image: SGI OpenGL Optimizer Programmer's Guide

Occlusion Culling

� Geometry hidden behind occluder cannot be seen

� Many complex algorithms exist to identify occluded geometry

74

Images: SGI OpenGL Optimizer Programmer's Guide

Video

� Umbra 3 Occlusion Culling explained

� http://www.youtube.com/watch?v=5h4QgDBwQhc

75

Small Object Culling

� Object projects to less than a specified size

� Cull objects whose screen-space bounding box is less than a
threshold number of pixels

76

Backface Culling

� Consider triangles as “one-sided”, i.e., only visible from
the “front”

� Closed objects

� If the “back” of the triangle is facing the camera, it is not visible

� Gain efficiency by not drawing it (culling)

� Roughly 50% of triangles in a scene are back facing

77

Backface Culling

� Convention:
Triangle is front facing if vertices are ordered
counterclockwise

� OpenGL allows one- or two-sided triangles
� One-sided triangles:

glEnable(GL_CULL_FACE); glCullFace(GL_BACK)
� Two-sided triangles (no backface culling):

glDisable(GL_CULL_FACE)

p0

p1

p2

p0

p1

p2
Front-facing Back-facing

78

Backface Culling

� Compute triangle normal after projection (homogeneous
division)

� Third component of n negative: front-facing, otherwise
back-facing

� Remember: projection matrix is such that homogeneous
division flips sign of third component

79

Degenerate Culling

� Degenerate triangle has no area

� Vertices lie in a straight line

� Vertices at the exact same place

� Normal n=0

80

Source: Computer Methods in Applied Mechanics

and Engineering, Volume 194, Issues 48–49

Rendering Pipeline

Modeling and Viewing

Transformation

Shading

Projection

Scan conversion,

visibility

Primitives

Image

Culling, Clipping

• Discard geometry that

will not be visible

81

