CSE 165: 3D User Interaction

Lecture #7: Input Devices Part 2

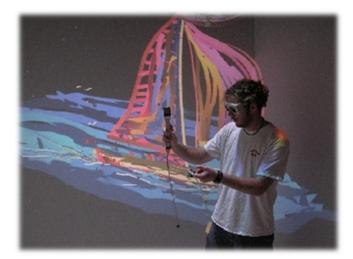
Announcements

Homework Assignment #2
Due tomorrow at 2pm
Sony Move check out
Homework discussion
Monday at 6pm

Input Devices

Application-Specific Devices

- Virtual hang-gliding over Rio de Janeiro (L. Soares at. al.)
- Virtual canoe, Siggraph 2005
 - Real-time water simulator with pre-computed 3D fluid dynamics
 - Creates realistic wakes and force feedback of water resistance



Cave Painting

- Physical props (brush, color palette, bucket) allow intuitive painting
- System created by Daniel Keefe at Brown University (now Prof. at Univ. of Minnesota)

6

Cave Painting Video

• <u>http://www.youtube.com/watch?v=WQv-</u> <u>LnHrmwU</u>

7

3D Input Devices for Games

CSE 165 - Wir

The Wiimote

- Uses Bluetooth for communication
- Senses acceleration along 3 axes
 - Used for sports games (tennis, bowling, etc.)
- 128x96 pixel monochrome camera with built-in image processing, requires sensor bar
 - Enables 2D on-screen pointer
- Standard buttons and trigger
- Provides audio and rumble feedback
- Up to 4 Wiimotes can be active simultaneously

Sensor Bar

- Connector for attachments
 - Nunchuck
 - Wii Zapper
 - Wii Wheel

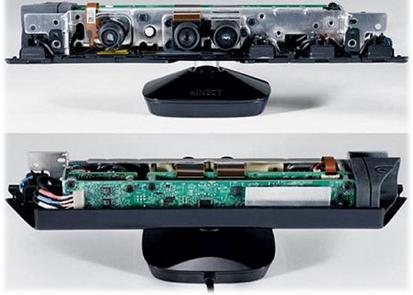
Wii Zapper

	В
_	

The Wii Motion Plus

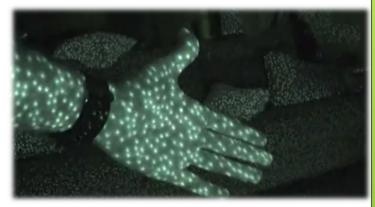
- Initially (June 2009) optional add-on, later built-in
- Uses 3-axis gyroscope
- Captures relative 3D orientation
- Improves pose and motion estimation
- Information captured by gyroscope can be used to distinguish true linear motion from accelerometer readings

Microsoft Kinect


- Microsoft sold 8 million units in first 60 days on market
 - Guinness World Record for "fastest selling consumer electronics device"
- Kinect features
 - RGB camera
 - Depth sensor
 - Microphone array
 - Motorized tilt
 - Connects via USB
- Enables controller-less user interface
- Full body tracking possible
- 2 versions:
 - Xbox (~\$100)
 - Windows PC (~\$200)

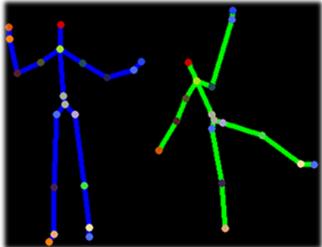
Kinect – Hardware Details

• RGB Camera


- 640 x 480 RGB pixels at 30Hz
- Depth Sensor
 - 640 x 480 monochrome pixels with 11-bit depth CMOS sensor at 30 Hz
 - Field of view: 57 ° horizontally, 43° vertically
 - Infrared laser projector
 - 4-11 feet range, down to 16 inches in near mode (Windows version only)
- Multi-array mic
 - Four microphones
 - Multi-channel echo cancellation
 - Sound position tracking
- Motorized tilt
 - 27° up or down

www.hardwaresphere.com

Kinect – Extracting 3D Depth


- Infrared laser projector emits known dot pattern
- CMOS sensor reads depth of all pixels
- Finds location of dots
- Computes depth information using stereo triangulation
 - Normally needs two cameras
 - Laser projector acts as second camera
- Depth image generation

Kinect – Skeleton Tracking

- Combines depth information with human body kinematics
 - 20 joint positions
- Object recognition approach
 - per pixel classification
 - decision forests (GPU)
 - millions of training samples

14

Leap Motion

• <u>http://www.youtube.com/watch?v=_d6Kui</u> <u>utelA</u>

Leap Motion Overview

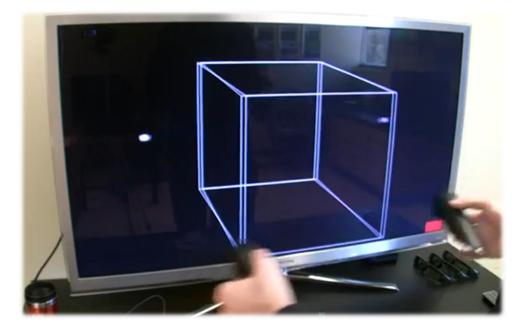
- Released July 2013
- Small form factor (3 x 1.2 x 0.5 inches)
- Short range finger tracking
 - No access to depth map
- Two IR cameras + optimized image processing
- Inexpensive (~\$70)
- Drivers for Windows and Mac OS
- Well documented SDK

Leap Technology

- 8 cubic feet of interactive space
- 2 cameras
- 3 IR LEDs
- 850 nm wavelength (invisible for the eye)

17

Leap Tracking


- USB controller reads sensor data into own local memory and performs resolution adjustments
- This data is streamed via USB to Leap Motion tracking software
- Images appear in grayscale
 - Intense sources or reflector of infrared light can make hands and fingers hard to distinguish and track

Interaction Area

2 feet above the controller, by 2 feet wide on each side (150° angle), by 2 feet deep on each side (120° angle)

Razer Hydra Video

- Razer Hydra for low-cost 3D displays
 - By Oliver Kreylos, UCD
 - <u>http://www.youtube.com/watch?v=H5bSz</u> <u>VByLjM</u>

Razer Hydra

- Developed by Sixense Entertainment
- Released June 16, 2011
- Tracks absolute position and orientation (6 DOF)
 - Precision: 1mm and 1 degree
- Uses a weak electromagnetic field
- Two wired input devices

STEM

- Wireless motion tracking
- Five tracking points
- Allows tracking of all four limbs plus the head
 or any other configuration
- Optimized performance from the desktop to the living room, with an 8-foot radius (16-foot diameter) range from the Base
- Backward compatibility via the Sixense SDK: uses an updated version of the Sixense SDK that also supports games and applications developed for the Razer Hydra.

STEM Distortion Correction

- Electro-magnetic fields get distorted by metal in the environment
- This can be counteracted by calibration and software
 - https://www.youtube.com/watch?v=y8e2L
 PfMGvI

Муо

- Gesture control armband
- Expandable circumference
- Weight: 93 grams
- Thickness: 0.45 inches
- Bluetooth 4.0
- EMG muscle sensors
- Motion sensor
- Haptic feedback (vibration)
- **o** \$199

23

Playstation Move

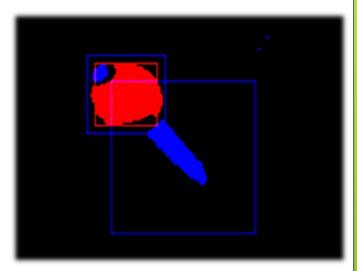
• <u>http://www.youtube.com/watch?v=hTKp</u> <u>gSpq-80</u>

PlayStation Move

- Consists of
 - PlayStation Eye camera
 - up to 4 motion controllers
 - Cost for Eye + 1 controller: ~\$50
- Features
 - Combines camera tracking with motion sensing
 - 6 DOF tracking (position and orientation)
 - Several buttons on front of device
 - Analog button on back of device
 - Vibration feedback
 - Wireless and USB connectivity

PlayStation Move – Hardware

- PlayStation Eye
 - 640 x 480 (60Hz)
 - 320 x 240 (120Hz)
 - Microphone array (4 mics)
- Move Controller
 - 3-axis accelerometer
 - 3-axis gyroscope
 - Magnetometer: helps to calibrate and correct for drift
 - 44mm diameter sphere with RGB LEDs
 - Used for position tracking
 - Invariant to rotation
 - Provides own light source
 - Color ensures visual uniqueness



www.hardwaresphere.com

PlayStation Move – 6 DOF Tracking

• Image Analysis

- Find sphere in image with segmentation algorithm
- Given known focal length and measured size of sphere in image, calculate 3D position
- Sensor Fusion
 - Combines results from image analysis with inertial sensors
 - Accelerometer
 - Gives pitch and roll angles when controller is stationary
 - Gives controller acceleration when orientation is known
 - Gyroscope
 - Measures angular velocity and acceleration

Move Buttons

- Four buttons (Square, Triangle, Cross, Circle) on front
- Two buttons (Select on left, Start on right) on sides
- Big Move button front center
- Small PS button on front with PlayStation Logo
 - Used as power button to switch on the controller
 - Holding it for about 10 seconds will turn off the controller
 - cannot be overwritten by software
- Trigger button on back, can be used as
 - a digital button
 - an analog button with an 8-bit value

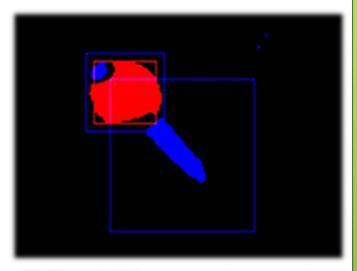
Move – Controller

- Accelerometer (16 bit)
 - Kionix KXSC4 10227 2410 (3-axis)
- Gyroscope (16 bit)
 - 2 chips: one for x and y (STM LPR425AL), one for z axis (Y5250H 2029 K8QEZ)
- Magnetometer (12 bit)
 - AKM AK8974 magnetic compass
 - helps to calibrate and correct for drift
- Temperature sensor
- Microcontroller (STM32F103VBT6)
- Bluetooth module (Cambridge Silicon Radio BC4RE), sending 60 updates/sec
- Mini USB connector
- 44mm diameter sphere with RGB LEDs
 - Used for position tracking
 - Invariant to rotation
 - Provides own light source
 - Color ensures visual uniqueness

www.hardwaresphere.com

Move - Camera

- PlayStation Eye
 - 640 x 480 (60Hz)
 - 320 x 240 (120Hz)
 - Microphone array (4 mics)
 - Manual exposure control



29

Move – 6 DOF Tracking

• Image Analysis

- Find sphere in image with segmentation algorithm
- Given known focal length and measured size of sphere in image, calculate 3D position
- Sensor Fusion
 - Combines results from image analysis with inertial sensors
 - Accelerometer
 - Gives pitch and roll angles when controller is stationary
 - Gives controller acceleration when orientation is known
 - Gyroscope
 - Measures angular velocity and acceleration

Navigation

Wayfinding – Cognitive Component Travel – Motor Component 31

Wayfinding

- Cognitive process of defining a path through an environment
 - o use and acquire spatial knowledge
 - o aided by natural and artificial cues
- Common activity in our daily lives
- Often unconscious activity (except when we are lost)

Information for the Wayfinding Task

- Landmarks
- Signs
- Maps
- Directional information

Transferring Spatial Knowledge

- Want to transfer knowledge to the real world
 - training
 - planning
- Navigation through complex environments to support other tasks

Wayfinding in 3DUIs

- Difficult problem
- Differences between wayfinding in real world and virtual world
 - unconstrained movement
 - absence of physical constraints
 - lack of realistic motion cues
- 3DUIs can provide a wealth of information

Wayfinding and Travel

- Exploration
 - browsing environment
 - useful in building cognitive map
- Search
 - spatial knowledge acquired and used
 - naïve search not enough info in cognitive map
 - primed search use of cognitive map defines success
- Maneuvering
 - uses very little of cognitive map

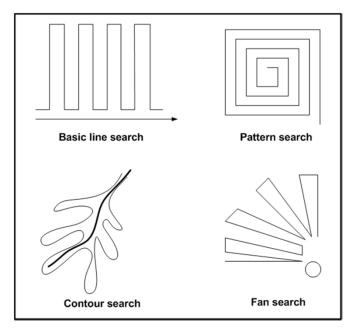
Wayfinding and Spatial Knowledge

- Landmark knowledge
 - visual characteristics of environment
 - shape, size, and texture
- Procedural knowledge
 - sequence of actions required to follow a path
 - requires sparse visual information
- Survey knowledge
 - topographical knowledge
 - object location/distance/orientation

Egocentric and Exocentric Reference Frames

- Egomotion feeling we are the center of space
- Egocentric first person
 - relative to human body
- Exocentric third person
 - relative to world
- Build up exocentric representation of world
 - survey knowledge
- Use egocentric when exploring for first time
 - landmark/procedural knowledge

User-Centered Wayfinding Support (1)


- Field of view
 - small FOV can inhibit wayfinding
 - user requires repetitive head movements
 - lack of optical flow in periphery
- Motion cues
 - enable judgment of depth and direction
 - supports backtracking of user's own movement
 - cue conflicts can hinder cognitive map development
- Multisensory Output
 - o audio
 - Tactile maps

Tactile Map

User-Centered Wayfinding Support (2)

- Presence (feeling of "being there")
 - o assumed to have impact on spatial knowledge
 - o closer to real world
- Search strategies

3D UI With the Leap

- Selection
 - Hover w/timeout
 - Trigger with non-dominant hand gesture
 - Two finger near-pinch
- Manipulation
 - Hand orientation
 - 3-finger orientation
 - 2-finger orientation (2 DOF)

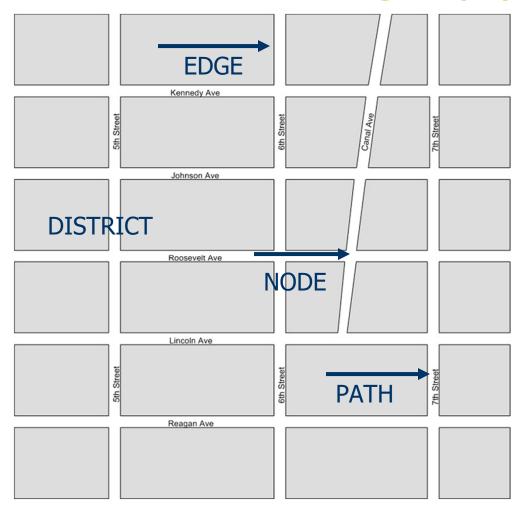
42

Menus

- Hover over buttons
- Leap API-Supported gestures:
 - Rotate
 - Swipe

General Tips

- Finger pinches hard to detect
- More than 3 fingers hard to distinguish
- Fingers hard to distinguish when hand not close to horizontal
- Hand detection (left/right): need to bring hands into FOV from back edge
- Options for camera motion: rotate around circle, set with non-dominant hand, map orientation of non-dominant hand

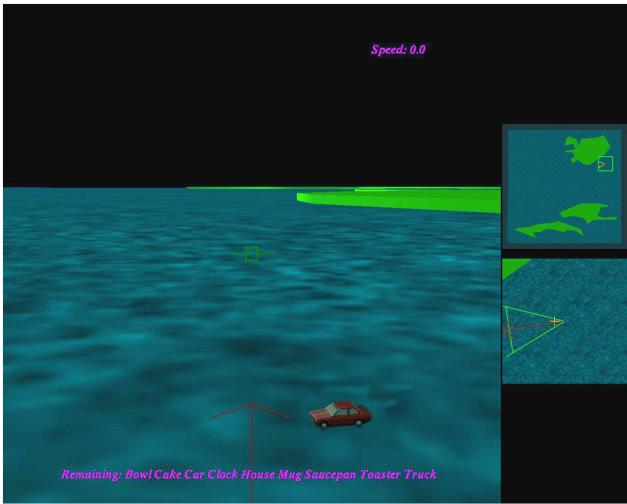

Environment-Centered Wayfinding Support

- Environmental design
- Artificial aids

Environmental Design (1)

- World's structure and format can aid in wayfinding
- Legibility techniques
 - divide large scale environment into parts with distinct character
 - create simple spatial organization
 - include directional cues to support egocentric/exocentric reference frames
 - o often repetitive

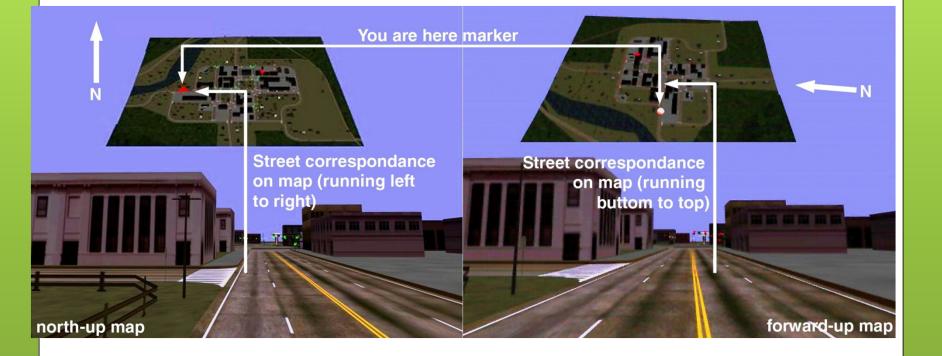
Environmental Design (2)

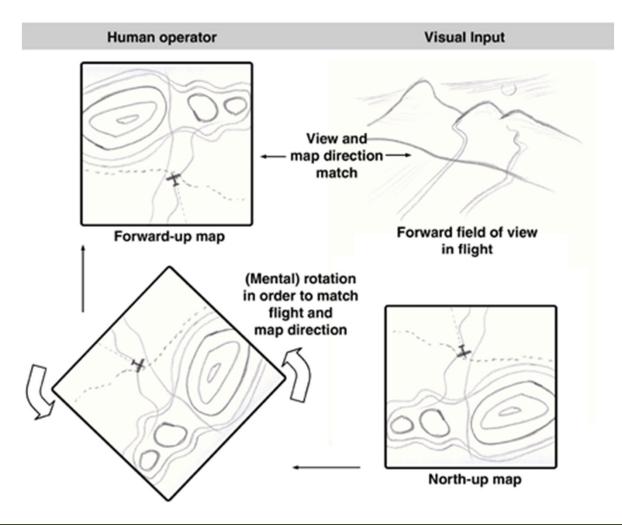

Environmental Design (3)

- Natural environment
 - horizon, atmospheric color, fog, etc...
- Architectural design
 - lighting
 - closed and open spaces
- Color and texture

Artificial Cues

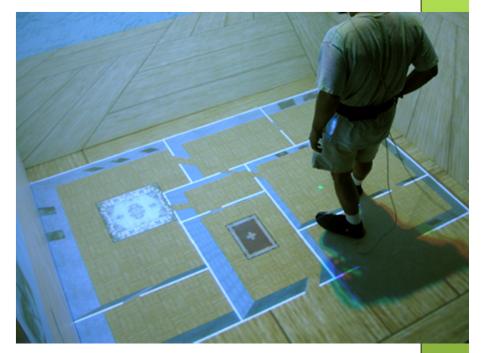
- Maps
- Compasses
- Signs
- Reference objects
- Artificial landmarks
- Trails


Maps (1)

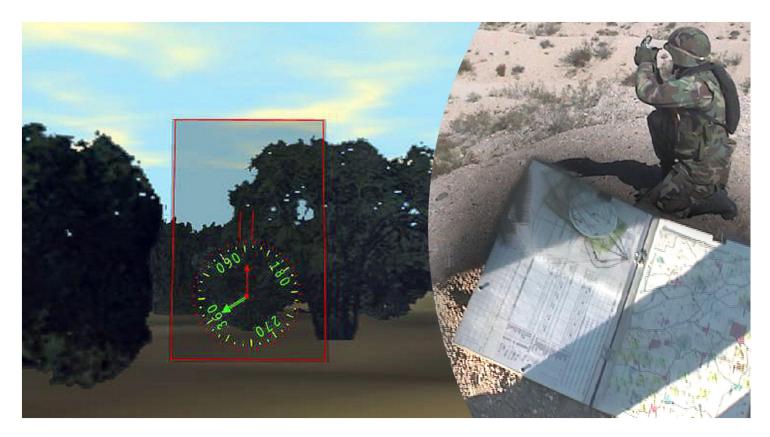

49

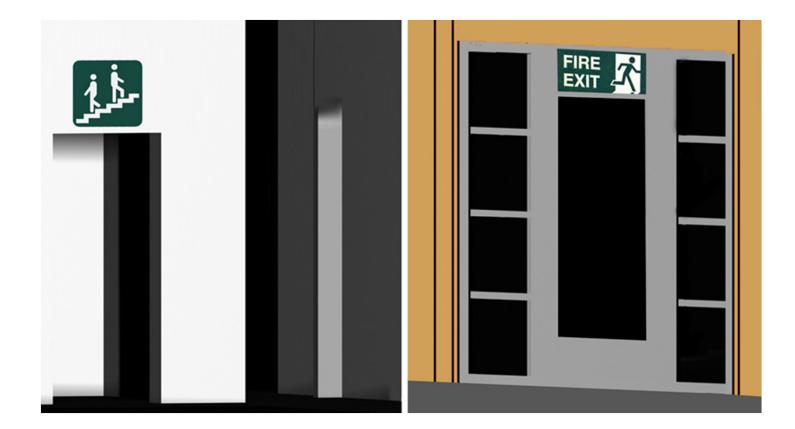
50

Maps (3)


Maps (2)

51


Maps (4)



52

Compasses

Signs

54

Reference Objects

Objects that have well known size
chair, human figure, etc...
Useful to estimate distances

Artificial Landmarks

- Local help users in decision making processes
- Global seen from any location

Trails

• Help user retrace steps

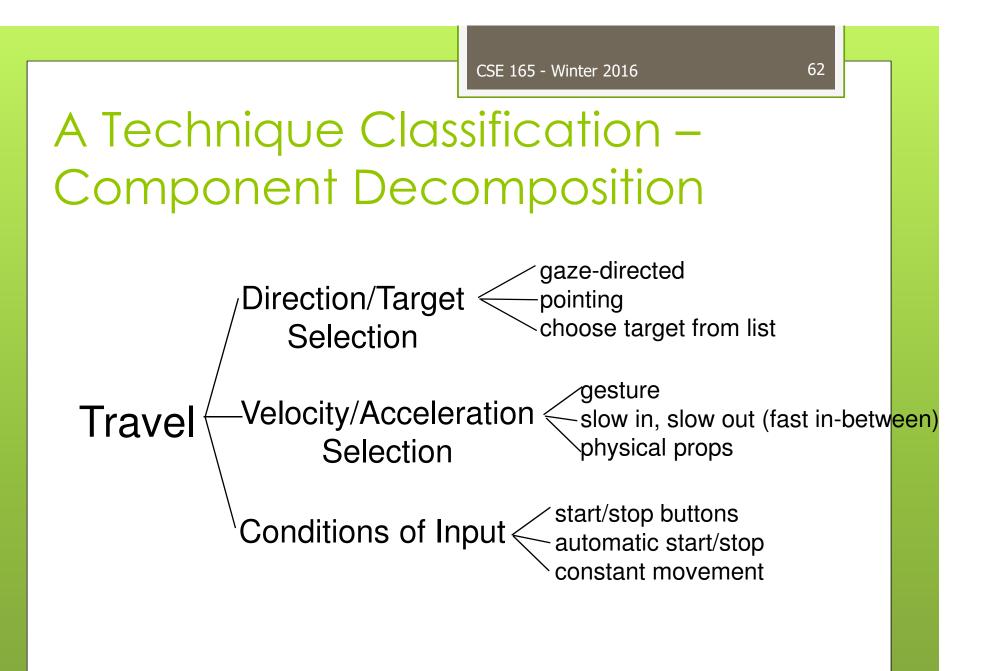
• Show what parts have been visited

58

Navigation

Wayfinding – Cognitive Component Travel – Motor Component

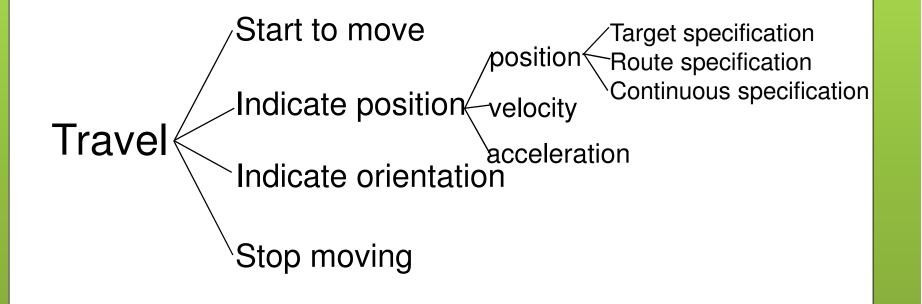
Travel


- The motor component of navigation
 - Good travel techniques integrate aids to wayfinding
- Movement between two locations, setting the position (and orientation) of the user's viewpoint
- The most basic and common VE interaction technique, used in almost any large-scale VE

Travel Tasks

- Exploration
 - travel which has no specific target
 - build knowledge of environment
- Search
 - naïve: travel to find a target whose position is not known
 - primed: travel to a target whose position is known
 - build layout knowledge; move to task location
- Maneuvering
 - travel to position viewpoint for task
 - short, precise movements

Travel Characteristics


- Travel distance
- Amount of curvature/number of turns in path
- Target visibility
- DOF required
- Accuracy required
- Other tasks during travel
- Active vs. passive
- Physical vs. virtual

From: Bowman, Koller, and Hodges, Travel in Immersive Virtual Environments. IEEE VRAIS '97

63

Alternate Technique Classification – User Control Level

Travel Techniques

- Physical locomotion ("natural" metaphors)
- Steering techniques
- Route planning
- Target-based techniques
- Manual manipulation
- Viewpoint orientation techniques

Physical Locomotion Techniques

- Walking techniques
 - Large-scale tracking
 - Walking in place
- Treadmills
 - single-direction with steering (Gait Master)
 - o omni-directional
- Bicycles
- Other physical motion techniques
 - Magic carpet
 - Disney's river raft ride

Large Scale Tracking

Omni-Directional Treadmill

• Video:

• <u>http://www.youtube.com/watch?v=BQw1t</u> <u>sgrJOs</u>

Omni

• <u>https://www.kickstarter.com/projects/1944625487/omni-</u> <u>move-naturally-in-your-favorite-game</u>

68