
CSE 167:

Introduction to Computer Graphics

Lecture #17: Shadow Mapping

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Spring Quarter 2015



Announcements

� 3rd blog entry due this Sunday

� Final project presentations in CSE 1202 on Tuesday, June 9th

2



Lecture Overview

Advanced Shader Effects

� Toon shading

3



Toon Shading
� A.k.a. Cel Shading (“Cel” is short for “celluloid” sheets, 
on which animation was hand-drawn)

� Gives any 3D model a cartoon-style look

� Emphasizes silhouettes

� Discrete steps for diffuse shading, highlights

� Non-photorealistic rendering method (NPR)

� Programmable shaders allow real-time performance

Off-line toon shader GLSL toon shader4

Source: Wikipedia



Approach

� Start with regular 3D model

� Apply two rendering tricks:

� Silhouette edges

� Emphasize pixels with normals perpendicular to viewing direction.

� Discretized shading

� Conventional (smooth) lighting values calculated for each pixel, then 
mapped to a small number of discrete shades.
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Silhouette Edges

� Silhouette edge detection

� Compute dot product of 
viewing direction v and 
normal n

� Use 1D texture to define edge ramp
uniform sample1D edgeramp; e=texture1D(edgeramp,edge);

0

1

edgeramp

edge
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Discretized Shading

� Compute diffuse and specular shading

� Use 1D textures diffuseramp, specularramp to map 
diffuse and specular shading to colors

� Final color:
uniform sampler1D diffuseramp;

uniform sampler1D specularramp;

c = e * (texture1D(diffuse,diffuseramp) +

texture1D(specular,specularramp));
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Toon Shading Demo

http://www.bonzaisoftware.com/npr.html
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Lecture Overview

� Shadows

� Shadow Mapping
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Why Are Shadows Important?

� Give additional cues on scene lighting
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Why Are Shadows Important?

� Contact points

� Depth cues
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Why Are Shadows Important?

� Realism

Without self-shadowing With self-shadowing
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Terminology

� Umbra: fully shadowed region

� Penumbra: partially shadowed region

(area) light source

receiver 
shadow

occluder

umbra

penumbra
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Hard and Soft Shadows

� Point and directional lights lead to hard shadows, no 
penumbra

� Area light sources lead to soft shadows, with penumbra

point directional area

umbra penumbra
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Hard and Soft Shadows

Hard shadow from 

point light source

Soft shadow from

area light source
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Shadows for Interactive Rendering

� In this course: hard shadows only

� Soft shadows hard to compute in interactive graphics

� Two most popular techniques:

� Shadow mapping

� Shadow volumes

� Many variations, subtleties

� Active research area
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Lecture Overview

� Shadows

� Shadow Mapping
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Shadow Mapping

Main Idea
� A scene point is lit by the light source if visible from 
the light source

� Determine visibility from light source by placing a 
camera at the light source position and rendering the 
scene from there

Scene points are lit if 

visible from light source

Determine visibility from 

light source by placing camera 

at light source position
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Two Pass Algorithm

First Pass

� Render scene by placing camera 
at light source position

� Store depth image (shadow map)

Depth image as seen 

from light source

depth value
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Two Pass Algorithm

Second Pass

� Render scene from 
camera position

� At each pixel, compare 
distance to light source 
with value in shadow map

� If distance is larger, 
pixel is in shadow

� If distance is smaller
or equal, pixel is lit

Final image with shadows

vb is in 

shadow pixel seen 

from eye vb
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Issues With Shadow Maps

� Limited field of view of shadow map

� Z-fighting

� Sampling problems
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Limited Field of View

� What if a scene point is 
outside the field of view 
of the shadow map?

field of

view
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Limited Field of View

� What if a scene point is 
outside the field of view of 
the shadow map?
� Use six shadow maps, 
arranged in a cube

� Requires a rendering pass 
for each shadow map

shadow

maps
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� Depth values for points 
visible from light source are 
equal in both rendering 
passes

� Because of limited resolution, 
depth of pixel visible from 
light could be larger than 
shadow map value

� Need to add bias in first pass 
to make sure pixels are lit

Z-Fighting

Camera image

Shadow map

Image

pixels

Shadow map

pixels Pixel is 

considered

in shadow!

Depth 

of pixel

Depth of 

shadow map
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Solution: Bias

� Add bias when rendering shadow map

� Move geometry away from light by small amount

� Finding correct amount of bias is tricky

Correct bias Not enough bias Too much bias
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Bias Adjustment

Just right

Not enough Too much
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Sampling Problems

� Shadow map pixel may project to many image pixels
� Stair-stepping artifacts

27



Solutions

� Increase resolution of shadow map
� Not always sufficient

� Split shadow map into several tiles

� Tweak projection for shadow map rendering
� Light space perspective shadow maps (LiSPSM) 

http://www.cg.tuwien.ac.at/research/vr/lispsm/

� Combination of splitting and LiSPSM
� Basis for most serious implementations
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Lecture Overview

� Particle Systems

� Collision Detection

� Deferred Rendering
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Particle Systems

� Used for:

� Fire/sparks

� Rain/snow

� Water spray

� Explosions

� Galaxies
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Internal Representation
� Particle system is collection of a number of individual elements (particles)

� Controls a set of particles which act autonomously but share some 
common attributes

� Particle Emitter: Source of all new particles

� 3D point

� Polygon mesh: particles’ initial velocity vector is normal to surface

� Particle attributes:

� position (3D)

� velocity (vector: speed and direction)

� color + opacity

� lifetime

� size

� shape

� weight
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Dynamic Updates

� Particles change position and/or attributes with time

� Initial particle attributes often created with random numbers

� Frame update:

� Parameters: simulation of particles, can include collisions with geometry

� Forces (gravity, wind, etc) accelerate a particle

� Acceleration changes velocity

� Velocity changes position

� Rendering: display as 

� OpenGL points

� (Textured) billboarded quads

� Point sprites

32

Source: http://www.particlesystems.org/



Point Sprite

� Screen-aligned element of variable size

� Defined by single point

� Sample code:

glTexEnvf(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);

glEnable(GL_POINT_SPRITE);

glBegin(GL_POINTS);

glVertex3f(position.x, position.y, position.z);

glEnd();

glDisable(GL_POINT_SPRITE);
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Demo

� Demo software by Prof. David McAllister:

� http://www.calit2.net/~jschulze/tmp/Particle221Demos.zip

34



References

� Tutorial with source code by Bartlomiej Filipek, 2014:

� http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-
Renderer

� Articles with source code:

� Jeff Lander: “The Ocean Spray in Your Face”, Game Developer, July 1998

� http://www.darwin3d.com/gamedev/articles/col0798.pdf

� John Van Der Burg: “Building an Advanced Particle System”, Gamasutra, 
June 2000

� http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php

� Founding scientific paper:

� Reeves: “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”, 
ACM Transactions on Graphics (TOG) Volume 2 Issue 2,  April 1983

� http://zach.in.tu-clausthal.de/teaching/vr_literatur/Reeves%20-%20Particle%20Systems.pdf
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Lecture Overview

� Particle Systems

� Collision Detection

� Deferred Rendering
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Collision Detection

� Goals:

� Physically correct simulation 
of collision of objects

� Not covered here

� Determine if two objects 
intersect

� Slow calculation because of 
exponential growth O(n2):

� # collision tests = n*(n-1)/2
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Intersection Testing

� Purpose:

� Keep moving objects on the ground

� Keep moving objects from going through walls, each other, etc.

� Goal: 

� Believable system, does not have to be physically correct

� Priority:

� Computationally inexpensive

� Typical approach:

� Spatial partitioning

� Object simplified for collision detection by one or a few

� Points

� Spheres

� Axis aligned bounding box (AABB)

� Pairwise checks between points/spheres/AABBs and static geometry
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Sweep and Prune Algorithm

� Sorts bounding boxes

� Not intuitively obvious how to sort bounding boxes in 3-space

� Dimension reduction approach:

� Project each 3-dimensional bounding box onto the x,y and z axes

� Find overlaps in 1D: a pair of bounding boxes can overlap if and only if 
their intervals overlap in all three dimensions

� Construct 3 lists, one for each dimension

� Each list contains start/end point of intervals corresponding to that dimension

� By sorting these lists, we can determine which intervals overlap

� Reduce sorting time by keeping sorted lists from previous frame, changing 
only the interval endpoints

� Alternative: project bounding boxes onto coordinate axis 
planes and look for overlaps in 2D
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Collision Map (CM)

� 2D map with information 
about where objects can go 
and what happens when they 
go there

� Colors indicate different 
types of locations

� Map can be computed from 
3D model, or hand drawn 
with paint program

� Granularity: defines how 
much area (in object space) 
one CM pixel represents
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References

� I-Collide:

� Interactive and exact collision detection library for large 
environments composed of convex polyhedra

� http://gamma.cs.unc.edu/I-COLLIDE/

� OZ Collide:

� Fast, complete and free collision detection library in C++

� Based on AABB tree

� http://www.tsarevitch.org/ozcollide/
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