
CSE 167:

Introduction to Computer Graphics

Lecture #17: Shadow Mapping

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Spring Quarter 2015

Announcements

� 3rd blog entry due this Sunday

� Final project presentations in CSE 1202 on Tuesday, June 9th

2

Lecture Overview

Advanced Shader Effects

� Toon shading

3

Toon Shading
� A.k.a. Cel Shading (“Cel” is short for “celluloid” sheets,
on which animation was hand-drawn)

� Gives any 3D model a cartoon-style look

� Emphasizes silhouettes

� Discrete steps for diffuse shading, highlights

� Non-photorealistic rendering method (NPR)

� Programmable shaders allow real-time performance

Off-line toon shader GLSL toon shader4

Source: Wikipedia

Approach

� Start with regular 3D model

� Apply two rendering tricks:

� Silhouette edges

� Emphasize pixels with normals perpendicular to viewing direction.

� Discretized shading

� Conventional (smooth) lighting values calculated for each pixel, then
mapped to a small number of discrete shades.

5

Source: Wikipedia

Silhouette Edges

� Silhouette edge detection

� Compute dot product of
viewing direction v and
normal n

� Use 1D texture to define edge ramp
uniform sample1D edgeramp; e=texture1D(edgeramp,edge);

0

1

edgeramp

edge

6

Discretized Shading

� Compute diffuse and specular shading

� Use 1D textures diffuseramp, specularramp to map
diffuse and specular shading to colors

� Final color:
uniform sampler1D diffuseramp;

uniform sampler1D specularramp;

c = e * (texture1D(diffuse,diffuseramp) +

texture1D(specular,specularramp));

7

Toon Shading Demo

http://www.bonzaisoftware.com/npr.html

8

Lecture Overview

� Shadows

� Shadow Mapping

9

Why Are Shadows Important?

� Give additional cues on scene lighting

10

Why Are Shadows Important?

� Contact points

� Depth cues

11

Why Are Shadows Important?

� Realism

Without self-shadowing With self-shadowing

12

Terminology

� Umbra: fully shadowed region

� Penumbra: partially shadowed region

(area) light source

receiver
shadow

occluder

umbra

penumbra

13

Hard and Soft Shadows

� Point and directional lights lead to hard shadows, no
penumbra

� Area light sources lead to soft shadows, with penumbra

point directional area

umbra penumbra

14

Hard and Soft Shadows

Hard shadow from

point light source

Soft shadow from

area light source

15

Shadows for Interactive Rendering

� In this course: hard shadows only

� Soft shadows hard to compute in interactive graphics

� Two most popular techniques:

� Shadow mapping

� Shadow volumes

� Many variations, subtleties

� Active research area

16

Lecture Overview

� Shadows

� Shadow Mapping

17

Shadow Mapping

Main Idea
� A scene point is lit by the light source if visible from
the light source

� Determine visibility from light source by placing a
camera at the light source position and rendering the
scene from there

Scene points are lit if

visible from light source

Determine visibility from

light source by placing camera

at light source position

18

Two Pass Algorithm

First Pass

� Render scene by placing camera
at light source position

� Store depth image (shadow map)

Depth image as seen

from light source

depth value

19

Two Pass Algorithm

Second Pass

� Render scene from
camera position

� At each pixel, compare
distance to light source
with value in shadow map

� If distance is larger,
pixel is in shadow

� If distance is smaller
or equal, pixel is lit

Final image with shadows

vb is in

shadow pixel seen

from eye vb

20

Issues With Shadow Maps

� Limited field of view of shadow map

� Z-fighting

� Sampling problems

21

Limited Field of View

� What if a scene point is
outside the field of view
of the shadow map?

field of

view

22

Limited Field of View

� What if a scene point is
outside the field of view of
the shadow map?
� Use six shadow maps,
arranged in a cube

� Requires a rendering pass
for each shadow map

shadow

maps

23

� Depth values for points
visible from light source are
equal in both rendering
passes

� Because of limited resolution,
depth of pixel visible from
light could be larger than
shadow map value

� Need to add bias in first pass
to make sure pixels are lit

Z-Fighting

Camera image

Shadow map

Image

pixels

Shadow map

pixels Pixel is

considered

in shadow!

Depth

of pixel

Depth of

shadow map

24

Solution: Bias

� Add bias when rendering shadow map

� Move geometry away from light by small amount

� Finding correct amount of bias is tricky

Correct bias Not enough bias Too much bias

25

Bias Adjustment

Just right

Not enough Too much

26

Sampling Problems

� Shadow map pixel may project to many image pixels
� Stair-stepping artifacts

27

Solutions

� Increase resolution of shadow map
� Not always sufficient

� Split shadow map into several tiles

� Tweak projection for shadow map rendering
� Light space perspective shadow maps (LiSPSM)

http://www.cg.tuwien.ac.at/research/vr/lispsm/

� Combination of splitting and LiSPSM
� Basis for most serious implementations

28

Lecture Overview

� Particle Systems

� Collision Detection

� Deferred Rendering

29

Particle Systems

� Used for:

� Fire/sparks

� Rain/snow

� Water spray

� Explosions

� Galaxies

30

Internal Representation
� Particle system is collection of a number of individual elements (particles)

� Controls a set of particles which act autonomously but share some
common attributes

� Particle Emitter: Source of all new particles

� 3D point

� Polygon mesh: particles’ initial velocity vector is normal to surface

� Particle attributes:

� position (3D)

� velocity (vector: speed and direction)

� color + opacity

� lifetime

� size

� shape

� weight

31

Dynamic Updates

� Particles change position and/or attributes with time

� Initial particle attributes often created with random numbers

� Frame update:

� Parameters: simulation of particles, can include collisions with geometry

� Forces (gravity, wind, etc) accelerate a particle

� Acceleration changes velocity

� Velocity changes position

� Rendering: display as

� OpenGL points

� (Textured) billboarded quads

� Point sprites

32

Source: http://www.particlesystems.org/

Point Sprite

� Screen-aligned element of variable size

� Defined by single point

� Sample code:

glTexEnvf(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);

glEnable(GL_POINT_SPRITE);

glBegin(GL_POINTS);

glVertex3f(position.x, position.y, position.z);

glEnd();

glDisable(GL_POINT_SPRITE);

33

Demo

� Demo software by Prof. David McAllister:

� http://www.calit2.net/~jschulze/tmp/Particle221Demos.zip

34

References

� Tutorial with source code by Bartlomiej Filipek, 2014:

� http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-
Renderer

� Articles with source code:

� Jeff Lander: “The Ocean Spray in Your Face”, Game Developer, July 1998

� http://www.darwin3d.com/gamedev/articles/col0798.pdf

� John Van Der Burg: “Building an Advanced Particle System”, Gamasutra,
June 2000

� http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php

� Founding scientific paper:

� Reeves: “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”,
ACM Transactions on Graphics (TOG) Volume 2 Issue 2, April 1983

� http://zach.in.tu-clausthal.de/teaching/vr_literatur/Reeves%20-%20Particle%20Systems.pdf

35

Lecture Overview

� Particle Systems

� Collision Detection

� Deferred Rendering

36

Collision Detection

� Goals:

� Physically correct simulation
of collision of objects

� Not covered here

� Determine if two objects
intersect

� Slow calculation because of
exponential growth O(n2):

� # collision tests = n*(n-1)/2

37

Intersection Testing

� Purpose:

� Keep moving objects on the ground

� Keep moving objects from going through walls, each other, etc.

� Goal:

� Believable system, does not have to be physically correct

� Priority:

� Computationally inexpensive

� Typical approach:

� Spatial partitioning

� Object simplified for collision detection by one or a few

� Points

� Spheres

� Axis aligned bounding box (AABB)

� Pairwise checks between points/spheres/AABBs and static geometry

38

Sweep and Prune Algorithm

� Sorts bounding boxes

� Not intuitively obvious how to sort bounding boxes in 3-space

� Dimension reduction approach:

� Project each 3-dimensional bounding box onto the x,y and z axes

� Find overlaps in 1D: a pair of bounding boxes can overlap if and only if
their intervals overlap in all three dimensions

� Construct 3 lists, one for each dimension

� Each list contains start/end point of intervals corresponding to that dimension

� By sorting these lists, we can determine which intervals overlap

� Reduce sorting time by keeping sorted lists from previous frame, changing
only the interval endpoints

� Alternative: project bounding boxes onto coordinate axis
planes and look for overlaps in 2D

39

Collision Map (CM)

� 2D map with information
about where objects can go
and what happens when they
go there

� Colors indicate different
types of locations

� Map can be computed from
3D model, or hand drawn
with paint program

� Granularity: defines how
much area (in object space)
one CM pixel represents

40

References

� I-Collide:

� Interactive and exact collision detection library for large
environments composed of convex polyhedra

� http://gamma.cs.unc.edu/I-COLLIDE/

� OZ Collide:

� Fast, complete and free collision detection library in C++

� Based on AABB tree

� http://www.tsarevitch.org/ozcollide/

41

