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Announcements
 Project 3 due Monday Nov 13th at 2pm
 Grading in basement labs starts at 2pm

 Tutoring hours will be in B270 until B260 reopens
 Project 3 late grading is on Friday Nov 17th
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Mentoring for VR Club
Connor Smith, VR Club President, c3smith@ucsd.edu:

“We have a bunch of really interesting projects going on 
this quarter, and helping them is a very high-impact and 
rewarding job.

Mentoring would only be a commitment of a few hours 
each weekend (3-5 hours on a Saturday or Sunday).  We're 
specifically looking for people with a wealth of Unity 
experience.  VR in Unity experience is preferred, but not 
required.”
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Visibility Culling
 Goal: 

Discard geometry that does not need to be drawn to 
speed up rendering

 Types of culling:
 Small object culling
 Degenerate culling
 Backface culling
 View frustum culling
 Occlusion culling
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Rendering Pipeline

Model and View
Transformations

Vertex Shading

Projection

Fragment Shading

Primitives

Image

Visibility Culling
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Small Object Culling
 Object projects to less than a specified size
 Cull objects whose screen-space bounding box is less than a 

threshold number of pixels
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Degenerate Culling
 Degenerate triangle has no area
 Normal n=0
 All vertices in a straight line
 All vertices in the same place
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Source: Computer Methods in Applied Mechanics 
and Engineering, Volume 194, Issues 48–49



Backface Culling
 Consider triangles as “one-sided”, i.e., only visible from 

the “front”
 Closed objects
 If the “back” of the triangle is facing away from the camera, it is 

not visible
 Gain efficiency by not drawing it (culling)
 Roughly 50% of triangles in a scene are back facing
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Backface Culling
 Convention: 

Triangle is front facing if vertices are ordered 
counterclockwise

p0

p1

p2

p0

p1

p2Front-facing Back-facing
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Backface Culling
 Compute triangle normal after projection (homogeneous 

division)

 Third component of n negative: front-facing, otherwise 
back-facing
 Remember: projection matrix is such that homogeneous 

division flips sign of third component
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OpenGL
 OpenGL allows one- or two-sided triangles
 One-sided triangles:

glEnable(GL_CULL_FACE); glCullFace(GL_BACK)
 Two-sided triangles (no backface culling):

glDisable(GL_CULL_FACE)
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glDisable(GL_CULL_FACE);   glEnable(GL_CULL_FACE); 



View Frustum Culling
 Triangles outside of view frustum are off-screen
 Done on canonical view volume
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Images: SGI OpenGL Optimizer Programmer's Guide



Videos
 Rendering Optimizations - Frustum Culling 
 http://www.youtube.com/watch?v=kvVHp9wMAO8

 View Frustum Culling Demo 
 http://www.youtube.com/watch?v=bJrYTBGpwic
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http://www.youtube.com/watch?v=kvVHp9wMAO8
http://www.youtube.com/watch?v=bJrYTBGpwic


Bounding Volumes
 Simple shape that 

completely
encloses an object

 Generally a box or 
sphere
 Easier to calculate culling for 

spheres
 Easier to calculate tight fits 

for boxes
 Intersect bounding

volume with view frustum 
instead of each primitive

14



Bounding Box
 How to cull objects consisting of may polygons?
 Cull bounding box
 Rectangular box, parallel to object space coordinate planes
 Box is smallest box containing the entire object
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Image: SGI OpenGL Optimizer Programmer's Guide



View Frustum Culling
 Frustum defined by 6 planes
 Each plane divides space into 

“outside”, “inside”
 Check each object against 

each plane
 Outside, inside, intersecting

 If “outside” all planes
 Outside the frustum

 If “inside” all planes
 Inside the frustum

 Else partly inside and partly out
 Efficiency

View frustum
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•p

• x

Distance to Plane
 A plane is described by a point p on the plane and a unit 

normal n
 Find the (perpendicular) distance from point x to the 

plane


n
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•p

• x

Distance to Plane
 The distance is the length of the projection of x-p

onto n

dist = x − p( )
 

⋅
n


n x−p

 
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 The distance has a sign
 positive on the side of the plane the normal points to
 negative on the opposite side
 zero exactly on the plane

 Divides 3D space into two infinite half-spaces

•p

Distance to Plane

dist(x) = x − p( )
 

⋅
n 

n Positive

Negative
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Distance to Plane
 Simplification

 d is independent of x
 d is distance from the origin to the plane
 We can represent a plane with just d and n
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Frustum With Signed Planes

 Normal of each plane points outside
 “outside” means positive distance
 “inside” means negative distance
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 For sphere with radius r and origin x, test the distance to 
the origin, and see if it is beyond the radius

 Three cases:
 dist(x)>r

 completely above

 dist(x)<-r
 completely below

 -r<dist(x)<r
 intersects

Test Sphere and Plane

•


n Positive

Negative
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Culling Summary
 Pre-compute the normal n and value d for each of 

the six planes.
 Given a sphere with center x and radius r
 For each plane:
 if dist(x) > r: sphere is outside!  (no need to continue loop)
 add 1 to count if dist(x)<-r

 If we made it through the loop, check the count:
 if the count is 6, the sphere is completely inside
 otherwise the sphere intersects the frustum
 (can use a flag instead of a count)
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 Want to be able to cull the whole group quickly
 But if the group is partly in and partly out, want to be 

able to cull individual objects

Culling Groups of Objects
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Hierarchical Bounding Volumes
 Given hierarchy of objects
 Bounding volume of each node encloses the bounding 

volumes of all its children
 Start by testing the outermost bounding volume
 If it is entirely outside, don’t draw the group at all
 If it is entirely inside, draw the whole group
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 If the bounding volume is partly inside and partly 
outside
 Test each child’s bounding volume individually
 If the child is in, draw it; if it’s out cull it; if it’s partly in and 

partly out, recurse.
 If recursion reaches a leaf node, draw it normally

Hierarchical Culling

26



Video
 Math for Game Developers - Frustum Culling 
 http://www.youtube.com/watch?v=4p-E_31XOPM
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http://www.youtube.com/watch?v=4p-E_31XOPM


Occlusion Culling
 Geometry hidden behind occluder cannot be seen
 Many complex algorithms exist to identify occluded geometry
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Images: SGI OpenGL Optimizer Programmer's Guide



Video
 Umbra 3 Occlusion Culling explained 
 http://www.youtube.com/watch?v=5h4QgDBwQhc
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http://www.youtube.com/watch?v=5h4QgDBwQhc


Level-of-Detail Techniques
 Don’t draw objects smaller than a threshold
 Small feature culling
 Popping artifacts

 Replace 3D objects by 2D impostors
 Textured planes representing the objects

 Adapt triangle count to projected size

Impostor generation

Original vs. impostor
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Size dependent mesh reduction

(Data: Stanford Armadillo)
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