
CSE 167:
Introduction to Computer Graphics
Lecture #11: Visibility Culling

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2017

Announcements
 Project 3 due Monday Nov 13th at 2pm
 Grading in basement labs starts at 2pm

 Tutoring hours will be in B270 until B260 reopens
 Project 3 late grading is on Friday Nov 17th

2

Mentoring for VR Club
Connor Smith, VR Club President, c3smith@ucsd.edu:

“We have a bunch of really interesting projects going on
this quarter, and helping them is a very high-impact and
rewarding job.

Mentoring would only be a commitment of a few hours
each weekend (3-5 hours on a Saturday or Sunday). We're
specifically looking for people with a wealth of Unity
experience. VR in Unity experience is preferred, but not
required.”

3

Visibility Culling
 Goal:

Discard geometry that does not need to be drawn to
speed up rendering

 Types of culling:
 Small object culling
 Degenerate culling
 Backface culling
 View frustum culling
 Occlusion culling

4

Rendering Pipeline

Model and View
Transformations

Vertex Shading

Projection

Fragment Shading

Primitives

Image

Visibility Culling

5

Small Object Culling
 Object projects to less than a specified size
 Cull objects whose screen-space bounding box is less than a

threshold number of pixels

6

Degenerate Culling
 Degenerate triangle has no area
 Normal n=0
 All vertices in a straight line
 All vertices in the same place

7

Source: Computer Methods in Applied Mechanics
and Engineering, Volume 194, Issues 48–49

Backface Culling
 Consider triangles as “one-sided”, i.e., only visible from

the “front”
 Closed objects
 If the “back” of the triangle is facing away from the camera, it is

not visible
 Gain efficiency by not drawing it (culling)
 Roughly 50% of triangles in a scene are back facing

8

Backface Culling
 Convention:

Triangle is front facing if vertices are ordered
counterclockwise

p0

p1

p2

p0

p1

p2Front-facing Back-facing

9

Backface Culling
 Compute triangle normal after projection (homogeneous

division)

 Third component of n negative: front-facing, otherwise
back-facing
 Remember: projection matrix is such that homogeneous

division flips sign of third component

10

OpenGL
 OpenGL allows one- or two-sided triangles
 One-sided triangles:

glEnable(GL_CULL_FACE); glCullFace(GL_BACK)
 Two-sided triangles (no backface culling):

glDisable(GL_CULL_FACE)

11

glDisable(GL_CULL_FACE); glEnable(GL_CULL_FACE);

View Frustum Culling
 Triangles outside of view frustum are off-screen
 Done on canonical view volume

12

Images: SGI OpenGL Optimizer Programmer's Guide

Videos
 Rendering Optimizations - Frustum Culling
 http://www.youtube.com/watch?v=kvVHp9wMAO8

 View Frustum Culling Demo
 http://www.youtube.com/watch?v=bJrYTBGpwic

13

http://www.youtube.com/watch?v=kvVHp9wMAO8
http://www.youtube.com/watch?v=bJrYTBGpwic

Bounding Volumes
 Simple shape that

completely
encloses an object

 Generally a box or
sphere
 Easier to calculate culling for

spheres
 Easier to calculate tight fits

for boxes
 Intersect bounding

volume with view frustum
instead of each primitive

14

Bounding Box
 How to cull objects consisting of may polygons?
 Cull bounding box
 Rectangular box, parallel to object space coordinate planes
 Box is smallest box containing the entire object

15

Image: SGI OpenGL Optimizer Programmer's Guide

View Frustum Culling
 Frustum defined by 6 planes
 Each plane divides space into

“outside”, “inside”
 Check each object against

each plane
 Outside, inside, intersecting

 If “outside” all planes
 Outside the frustum

 If “inside” all planes
 Inside the frustum

 Else partly inside and partly out
 Efficiency

View frustum

16

•p

• x

Distance to Plane
 A plane is described by a point p on the plane and a unit

normal n
 Find the (perpendicular) distance from point x to the

plane


n

17

•p

• x

Distance to Plane
 The distance is the length of the projection of x-p

onto n

dist = x − p()
 

⋅
n


n x−p

 

18

 The distance has a sign
 positive on the side of the plane the normal points to
 negative on the opposite side
 zero exactly on the plane

 Divides 3D space into two infinite half-spaces

•p

Distance to Plane

dist(x) = x − p()
 

⋅
n 

n Positive

Negative
19

Distance to Plane
 Simplification

 d is independent of x
 d is distance from the origin to the plane
 We can represent a plane with just d and n

20

Frustum With Signed Planes

 Normal of each plane points outside
 “outside” means positive distance
 “inside” means negative distance

21

 For sphere with radius r and origin x, test the distance to
the origin, and see if it is beyond the radius

 Three cases:
 dist(x)>r

 completely above

 dist(x)<-r
 completely below

 -r<dist(x)<r
 intersects

Test Sphere and Plane

•


n Positive

Negative

22

Culling Summary
 Pre-compute the normal n and value d for each of

the six planes.
 Given a sphere with center x and radius r
 For each plane:
 if dist(x) > r: sphere is outside! (no need to continue loop)
 add 1 to count if dist(x)<-r

 If we made it through the loop, check the count:
 if the count is 6, the sphere is completely inside
 otherwise the sphere intersects the frustum
 (can use a flag instead of a count)

23

 Want to be able to cull the whole group quickly
 But if the group is partly in and partly out, want to be

able to cull individual objects

Culling Groups of Objects

24

Hierarchical Bounding Volumes
 Given hierarchy of objects
 Bounding volume of each node encloses the bounding

volumes of all its children
 Start by testing the outermost bounding volume
 If it is entirely outside, don’t draw the group at all
 If it is entirely inside, draw the whole group

25

 If the bounding volume is partly inside and partly
outside
 Test each child’s bounding volume individually
 If the child is in, draw it; if it’s out cull it; if it’s partly in and

partly out, recurse.
 If recursion reaches a leaf node, draw it normally

Hierarchical Culling

26

Video
 Math for Game Developers - Frustum Culling
 http://www.youtube.com/watch?v=4p-E_31XOPM

27

http://www.youtube.com/watch?v=4p-E_31XOPM

Occlusion Culling
 Geometry hidden behind occluder cannot be seen
 Many complex algorithms exist to identify occluded geometry

28

Images: SGI OpenGL Optimizer Programmer's Guide

Video
 Umbra 3 Occlusion Culling explained
 http://www.youtube.com/watch?v=5h4QgDBwQhc

29

http://www.youtube.com/watch?v=5h4QgDBwQhc

Level-of-Detail Techniques
 Don’t draw objects smaller than a threshold
 Small feature culling
 Popping artifacts

 Replace 3D objects by 2D impostors
 Textured planes representing the objects

 Adapt triangle count to projected size

Impostor generation

Original vs. impostor

30
Size dependent mesh reduction

(Data: Stanford Armadillo)

	CSE 167:�Introduction to Computer Graphics�Lecture #11: Visibility Culling
	Announcements
	Mentoring for VR Club
	Visibility Culling
	Rendering Pipeline
	Small Object Culling
	Degenerate Culling
	Backface Culling
	Backface Culling
	Backface Culling
	OpenGL
	View Frustum Culling
	Videos
	Bounding Volumes
	Bounding Box
	View Frustum Culling
	Distance to Plane
	Distance to Plane
	Distance to Plane
	Distance to Plane
	Frustum With Signed Planes
	Test Sphere and Plane
	Culling Summary
	Culling Groups of Objects
	Hierarchical Bounding Volumes
	Hierarchical Culling
	Video
	Occlusion Culling
	Video
	Level-of-Detail Techniques

