
CSE 167:
Introduction to Computer Graphics
Lecture #4: Linear Algebra

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2020

Announcements
 Homework Project 1 due October 25
 Discussion Project 1: Wednesday 1pm

2

Overview
 Vectors and matrices
 Affine transformations
 Homogeneous coordinates

3

Vectors
 Give direction and length in 3D
 Vectors can describe
 Difference between two 3D points
 Speed of an object
 Surface normals (vectors perpendicular to surfaces)

4

Vector arithmetic using coordinates

a =
ax

ay

az

















b =
bx

by

bz

















a + b =
ax + bx

ay + by

az + bz

















a − b =
ax − bx

ay − by

az − bz

















sa =
sax

say

saz

















−a =
−ax

−ay

−az

















where s is a scalar

5

Vector Magnitude
 The magnitude (length) of a vector is:

 A vector with length of 1.0 is called unit vector
 We can also normalize a vector to make it a unit

vector

 Unit vectors are often used as surface normals

v 2 = vx
2 + vy

2 + vz
2

v = vx
2 + vy

2 + vz
2

v
v

6

Dot Product

7

a ⋅b = aibi∑
a ⋅b = axbx + ayby + azbz

a ⋅b = a b cosθ

Dot Product with Unit Vector
 The dot product of a with unit vector u, denoted a·u, is

defined to be the projection of a in the direction of u, or
the amount that a is pointing in the same direction as unit
vector u.

8

a

b

a ⋅b = a b cosθ

cosθ =
a ⋅b
a b








θ = cos−1 a ⋅b
a b








Angle Between Two Vectors

9

Dot Product: Interpretation
 If a and b are perpendicular, the result of the dot product

will be zero.

 If the angle between a and b is less than 90 degrees, the
dot product will be positive (greater than zero).

 If the angle between a and b is greater than 90 degrees,
the dot product will be negative (less than zero)

10

area of parallelogram ab

if a and b are parallel
(or one or both degenerate)

a × b

a × b = a b sinθ
a × b =

a × b = 0

Cross Product
is a vector perpendicular to both a
and b, in the direction defined by
the right hand rule

11

Cross Product

12

𝑎𝑎 × 𝑏𝑏 =
𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧

×
𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧

=
𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦
𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧
𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥

𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧

×
𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧

=
𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦
𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧
𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥

𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧

×
𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧

=
𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦
𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧
𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥

Cross Product Calculation

13

𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧

×
𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧

=
𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦
𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧
𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥

Matrices
 Rectangular array of numbers

 Square matrix if m = n
 In graphics almost always: m = n = 3; m = n = 4

14

Matrix Addition

15

Multiplication With Scalar

16

Matrix Multiplication

17

Matrix-Vector Multiplication

18

Identity Matrix

19

Matrix Inverse

If a square matrix M is non-singular, there exists a unique
inverse M-1 such that

20

Overview
 Vectors and matrices
 Affine transformations
 Homogeneous coordinates

21

Affine Transformations
 Most important for graphics:
 rotation, translation, scaling

 Wolfram MathWorld:
 An affine transformation is any transformation that

preserves collinearity (i.e., all points lying on a line initially still
lie on a line after transformation) and ratios of distances
(e.g., the midpoint of a line segment remains the midpoint after
transformation).

 Implemented using matrix multiplications

22

Uniform Scale

 Uniform scale matrix in 2D

 Analogous in 3D:

23

𝑠𝑠 0 0
0 𝑠𝑠 0
0 0 𝑠𝑠

Non-Uniform Scale

 Nonuniform scaling matrix in 2D

24

Non-Uniform Scale in 3D

 Scale in 2D: 𝑠𝑠 0
0 𝑡𝑡

 Analogous in 3D:
𝑠𝑠 0 0
0 𝑡𝑡 0
0 0 𝑢𝑢

25

Rotation in 2D
 Convention: positive angle rotates counterclockwise
 Rotation matrix

26

Rotation in 3D
Rotation around coordinate axes

27

Rotation in 3D
 Concatenation of rotations around x, y, z axes

 are called Euler angles
 Result depends on matrix order!

28

Rotation about an Arbitrary Axis
 Complicated!
 Rotate point [x,y,z] about axis [u,v,w] by angle θ:

29

How to rotate around a Pivot Point?

Rotation around
origin:
p’ = R p

Rotation around
pivot point:
p’ = ?

30

Rotating point p around a pivot point

1. Translation T 2. Rotation R 3. Translation T-1

31

p’ = T-1 R T p

Concatenating transformations
 Given a sequence of transformations M3M2M1

 Note: associativity applies

32

Overview
 Vectors and matrices
 Affine transformations
 Homogeneous coordinates

33

Translation
 Translation in 2D

 Translation matrix T=?

34

tx

ty

𝑣𝑣′ =
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦 +

𝑡𝑡𝑥𝑥
𝑡𝑡𝑦𝑦 = 𝑇𝑇𝑇𝑇 = 𝑇𝑇

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦 = ? ?

? ?
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦

Translation
 Translation in 2D: 3x3 matrix

 Analogous in 3D: 4x4 matrix

35

36

Homogeneous Coordinates

 Basic: a trick to unify/simplify computations.

 Deeper: projective geometry
 Interesting mathematical properties
 Good to know, but less immediately practical
 We will use some aspect of this when we do perspective

projection

37

Homogeneous Coordinates
 Allows us to unify affine transformation calculations.
 Add an extra component. 1 for a point, 0 for a vector:

 Combine M and d into single 4x4 matrix:

 Let’s see what happens when we multiply now…



p =

px

py

pz

1



















 v =

vx

vy

vz

0



















mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1



















38

Homogeneous Point Transform
 Transform a point:

 Top three rows are the affine transform!
 Bottom row stays 1



′px

′py

′pz

1



















 =

mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1



















px

py

pz

1



















=

mxx px + mxy py + mxz pz + dx

myx px + myy py + myz pz + dy

mzx px + mzy py + mzz pz + dz

0 + 0 + 0 +1



















 M
px

py

pz
















 +


d

39

Homogeneous Vector Transform
 Transform a vector:

 Top three rows are the linear transform
 Displacement d is properly ignored

 Bottom row stays 0

′vx

′vy

′vz

0



















 =

mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1



















vx

vy

vz

0



















=

mxxvx + mxyvy + mxzvz + 0
myxvx + myyvy + myzvz + 0
mzxvx + mzyvy + mzzvz + 0

0 + 0 + 0 + 0



















 M
vx

vy

vz

















40

Homogeneous Arithmetic

 Correct operations always end in 0 or 1



vector+vector:


0







 +



0







 ⇒



0









vector-vector:


0







 −



0







 ⇒



0









scalar*vector: s


0







 ⇒



0









point+vector:


1







 +



0







 ⇒



1









point-point:


1







 −



1







 ⇒



0









point+point:


1







 +



1







 ⇒



2









scalar*point: s


1







 ⇒



s









weighted average
affine combination








 of points: 1
3


1







 +

2
3


1







 ⇒



1









41

Homogeneous Transforms
 Rotation, Scale, and Translation of points and vectors

unified in a single matrix transformation:

 Matrix has the form:
 Last row always 0,0,0,1

 Transforms can be composed by matrix multiplication
 Same caveat: order of operations is important
 Same note: transforms operate right-to-left

mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1



















′p = M p

Normal Transformation
 Why don’t normal vectors always get transformed

correctly with geometry?

 Middle image: normal scaled like geometry gives wrong result
https://paroj.github.io/gltut/Illumination/Tut09%20Normal%20Transformation.html

42

https://paroj.github.io/gltut/Illumination/Tut09%20Normal%20Transformation.html

4x4 Scale Matrix

 Generic form:

𝑠𝑠 0 0 0
0 𝑡𝑡 0 0
0 0 𝑢𝑢 0
0 0 0 1

 Inverse:

1
𝑠𝑠 0 0 0
0 1

𝑡𝑡 0 0
0 0 1

𝑢𝑢 0
0 0 0 1

43

4x4 Rotation Matrix

 Generic form:

𝑟𝑟1 𝑟𝑟2 𝑟𝑟3 0
𝑟𝑟4 𝑟𝑟5 𝑟𝑟6 0
𝑟𝑟7 𝑟𝑟8 𝑟𝑟9 0
0 0 0 1

 Inverse:

𝑟𝑟1 𝑟𝑟4 𝑟𝑟7 0
𝑟𝑟2 𝑟𝑟5 𝑟𝑟8 0
𝑟𝑟3 𝑟𝑟6 𝑟𝑟9 0
0 0 0 1

44

4x4 Translation Matrix

 Generic form:

1 0 0 𝑡𝑡𝑥𝑥
0 1 0 𝑡𝑡𝑦𝑦
0 0 1 𝑡𝑡𝑧𝑧
0 0 0 1

 Inverse:

1 0 0 −𝑡𝑡𝑥𝑥
0 1 0 −𝑡𝑡𝑦𝑦
0 0 1 −𝑡𝑡𝑧𝑧
0 0 0 1

45

Quaternions

Rotation Calculations
 Intuitive approach: Euler Angles
 Simplest way to calculate rotations
 Defines rotation by 3 sequential rotations about coordinate

axes

 Example for rotation order Z-Y-X:

http://www.globalspec.com/reference/49379/203279/3-3-euler-angles

Problems With Euler Angles
 Problems with Euler angles:
 No standard for order of rotations
 Gimbal Lock, occurs in certain object orientations

 Video: https://www.youtube.com/watch?v=rrUCBOlJdt4

 Better: rotation about arbitrary axis (no Gimbal lock)
 Can be done with 4x4 matrix

 But: smoothly interpolating between two orientations is
difficult

  Quaternions

Quaternion Definition
 Given angle and axis of rotation:
 a: rotation angle
 {nx,ny,nz}: normalized rotation axis

 Calculation of quaternion coefficients w, x, y, z:
 w = cos(a /2)
 x = sin(a /2) * nx
 y = sin(a /2) * ny
 z = sin(a /2) * nz

Useful Quaternions

w x y z Description

1 0 0 0 Identity quaternion, no rotation

0 1 0 0 180° turn around X axis

0 0 1 0 180° turn around Y axis

0 0 0 1 180° turn around Zaxis

sqrt(0.5) sqrt(0.5) 0 0 90° rotation around X axis

sqrt(0.5) 0 sqrt(0.5) 0 90° rotation around Y axis

sqrt(0.5) 0 0 sqrt(0.5) 90° rotation around Z axis

sqrt(0.5) -sqrt(0.5) 0 0 -90° rotation around X axis

sqrt(0.5) 0 -sqrt(0.5) 0 -90° rotation around Y axis

sqrt(0.5) 0 0 -sqrt(0.5) -90° rotation around Zaxis

Quaternions in GLM
 Create a quaternion for a 90 degree rotation about the y

axis:
 glm::quat rot =

glm::angleAxis(glm::radians(90.f), glm::vec3(0.f, 1.f, 0.f));

 Cast the quaternion into a 4x4 matrix:
 glm::mat4 rotate = glm::mat4_cast(rot);

51

Quaternions: Further Reading
 Rotating Objects Using Quaternions:
 http://www.gamasutra.com/view/feature/131686/rotating_objec

ts_using_quaternions.php

 Quaternions in GLM:
 http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-

17-quaternions/

 Quaternions in Unity 3D:
 https://docs.unity3d.com/ScriptReference/Quaternion.html

 Quaternions in OpenSceneGraph :
 http://www.openscenegraph.org/index.php/documentation/kno

wledge-base/40-quaternion-maths

http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/
https://docs.unity3d.com/ScriptReference/Quaternion.html
http://www.openscenegraph.org/index.php/documentation/knowledge-base/40-quaternion-maths

	CSE 167:�Introduction to Computer Graphics�Lecture #4: Linear Algebra
	Announcements
	Overview
	Vectors
	Vector arithmetic using coordinates
	Vector Magnitude
	Dot Product
	Dot Product with Unit Vector
	Angle Between Two Vectors
	Dot Product: Interpretation
	Cross Product
	Cross Product
	Cross Product Calculation
	Matrices
	Matrix Addition
	Multiplication With Scalar
	Matrix Multiplication
	Matrix-Vector Multiplication
	Identity Matrix
	Matrix Inverse
	Overview
	Affine Transformations
	Uniform Scale
	Non-Uniform Scale
	Non-Uniform Scale in 3D
	Rotation in 2D
	Rotation in 3D
	Rotation in 3D
	Rotation about an Arbitrary Axis
	How to rotate around a Pivot Point?
	Rotating point p around a pivot point
	Concatenating transformations
	Overview
	Translation
	Translation
	Homogeneous Coordinates
	Homogeneous Coordinates
	Homogeneous Point Transform
	Homogeneous Vector Transform
	Homogeneous Arithmetic
	Homogeneous Transforms
	Normal Transformation
	4x4 Scale Matrix
	4x4 Rotation Matrix
	4x4 Translation Matrix
	Quaternions
	Rotation Calculations
	Problems With Euler Angles
	Quaternion Definition
	Useful Quaternions
	Quaternions in GLM
	Quaternions: Further Reading

