CSE 167:
Introduction to Computer Graphics Lecture \#4: Linear Algebra

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2020

Announcements

- Homework Project I due October 25
- Discussion Project I:Wednesday Ipm

Overview

- Vectors and matrices
- Affine transformations
- Homogeneous coordinates

Vectors

- Give direction and length in 3D
- Vectors can describe

- Difference between two 3D points
- Speed of an object
- Surface normals (vectors perpendicular to surfaces)

Vector arithmetic using coordinates

$$
\begin{array}{cc}
\mathbf{a}=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right] & \mathbf{b}=\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right] \\
\mathbf{a}+\mathbf{b}=\left[\begin{array}{l}
a_{x}+b_{x} \\
a_{y}+b_{y} \\
a_{z}+b_{z}
\end{array}\right] & \mathbf{a}-\mathbf{b}=\left[\begin{array}{l}
a_{x}-b_{x} \\
a_{y}-b_{y} \\
a_{z}-b_{z}
\end{array}\right] \\
-\mathbf{a}=\left[\begin{array}{l}
-a_{x} \\
-a_{y} \\
-a_{z}
\end{array}\right]
\end{array}
$$

$$
s \mathbf{a}=\left[\begin{array}{c}
s a_{x} \\
s a_{y} \\
s a_{z}
\end{array}\right] \quad \text { where } s \text { is a scalar }
$$

Vector Magnitude

- The magnitude (length) of a vector is:

$$
\begin{aligned}
& |\mathbf{v}|^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2} \\
& |\mathbf{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}
\end{aligned}
$$

- A vector with length of $I .0$ is called unit vector
- We can also normalize a vector to make it a unit vector

$$
\frac{\mathbf{v}}{|\mathbf{v}|}
$$

- Unit vectors are often used as surface normals

Dot Product

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=\sum a_{i} b_{i} \\
& \mathbf{a} \cdot \mathbf{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
\end{aligned}
$$

$$
\mathbf{a} \cdot \mathbf{b}=|a||b| \cos \theta
$$

Dot Product with Unit Vector

- The dot product of a with unit vector \mathbf{u}, denoted $\mathbf{a} \cdot \mathbf{u}$, is defined to be the projection of \mathbf{a} in the direction of \mathbf{u}, or the amount that \mathbf{a} is pointing in the same direction as unit vector u.

Angle Between Two Vectors

$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$

$\cos \theta=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)$
$\theta=\cos ^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)$

Dot Product: Interpretation

- If \mathbf{a} and \mathbf{b} are perpendicular, the result of the dot product will be zero.
- If the angle between \mathbf{a} and \mathbf{b} is less than 90 degrees, the dot product will be positive (greater than zero).
- If the angle between \mathbf{a} and \mathbf{b} is greater than 90 degrees, the dot product will be negative (less than zero)

Cross Product

$\mathbf{a} \times \mathbf{b}$ is a vector perpendicular to both a and \mathbf{b}, in the direction defined by the right hand rule

$$
\begin{aligned}
& |\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta \\
& |\mathbf{a} \times \mathbf{b}|=\text { area of parallelogram } \mathbf{a b}
\end{aligned}
$$

$$
|\mathbf{a} \times \mathbf{b}|=0 \text { if } \mathbf{a} \text { and } \mathbf{b} \text { are parallel }
$$ (or one or both degenerate)

Cross Product

$$
a \times b=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right] \times\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\begin{array}{l}
a_{y} b_{z}-a_{z} b_{y} \\
a_{z} b_{x}-a_{x} b_{z} \\
a_{x} b_{y}-a_{y} b_{x}
\end{array}\right]
$$

Cross Product Calculation

$$
\begin{aligned}
& {\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right] \times\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\begin{array}{l}
a_{y} b_{z}-a_{z} b_{y} \\
a_{z} b_{x}-a_{x} b_{z} \\
a_{x} b_{y}-a_{y} b_{x}
\end{array}\right]} \\
& {\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right] \times\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\begin{array}{l}
a_{y} b_{z}-a_{z} b_{y} \\
a_{z} b_{x}-a_{x} b_{z} \\
a_{x} b_{y}-a_{y} b_{x}
\end{array}\right]} \\
& {\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right] \times\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\begin{array}{l}
a_{y} b_{z}-a_{z} b_{y} \\
a_{z} b_{x}-a_{x} b_{z} \\
a_{x} b_{y}-a_{y} b_{x}
\end{array}\right]}
\end{aligned}
$$

Matrices

- Rectangular array of numbers

$$
\mathbf{M}=\left[\begin{array}{cccc}
m_{1,1} & m_{1,2} & \ldots & m_{1, n} \\
m_{2,1} & m_{2,2} & \ldots & m_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{m, 1} & m_{2,2} & \ldots & m_{m, n}
\end{array}\right] \in \mathbf{R}^{m \times n}
$$

- Square matrix if $\mathbf{m}=\mathbf{n}$
- In graphics almost always: $\mathbf{m = n = 3 ;} \mathbf{m = n = 4}$

Matrix Addition

$$
\mathbf{A}+\mathbf{B}=\left[\begin{array}{cccc}
a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} & \ldots & a_{1, n}+b_{1, n} \\
a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} & \ldots & a_{2, n}+b_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1}+b_{m, 1} & a_{2,2}+b_{2,2} & \ldots & a_{m, n}+b_{m, n}
\end{array}\right]
$$

$\mathbf{A}, \mathbf{B} \in \mathbf{R}^{m \times n}$

Multiplication With Scalar

$$
s \mathbf{M}=\mathbf{M} s=\left[\begin{array}{cccc}
s m_{1,1} & s m_{1,2} & \ldots & s m_{1, n} \\
s m_{2,1} & s m_{2,2} & \ldots & s m_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
s m_{m, 1} & s m_{2,2} & \ldots & s m_{m, n}
\end{array}\right]
$$

Matrix Multiplication

$$
\begin{gathered}
\mathbf{A B}=\mathbf{C}, \quad \mathbf{A} \in \mathbf{R}^{p, q}, \mathbf{B} \in \mathbf{R}^{q, r}, \mathbf{C} \in \mathbf{R}^{p, r} \\
(\mathbf{A B})_{i, j}=\mathbf{C}_{i, j}=\sum_{k=1}^{q} a_{i, k} b_{k, j}, \quad i \in 1 . . p, j \in 1 . . r
\end{gathered}
$$

Matrix-Vector Multiplication

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathrm{a} & b \\
\mathrm{c} & d
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right] }=\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right] \\
& {\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] }=\left[\begin{array}{c}
a x+b y+c \\
d x+e y+f \\
1
\end{array}\right] \\
& {\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] }=\left[\begin{array}{c}
a x+b y+c z \\
d x+e y+f z \\
g x+h y+i z
\end{array}\right] \\
& {\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c z+d \\
e x+f y+g z+h \\
i x+j y+k z+l \\
1
\end{array}\right] }
\end{aligned}
$$

Identity Matrix

$$
I_{1}=[1], I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], I_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \cdots, I_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

$\mathbf{M I}=\mathbf{I M}=\mathbf{M}, \quad$ for any $\mathbf{M} \in \mathbf{R}^{n \times n}$

Matrix Inverse

If a square matrix \mathbf{M} is non-singular, there exists a unique inverse \mathbf{M}^{-1} such that

$$
\begin{gathered}
\mathbf{M} \mathbf{M}^{-1}=\mathbf{M}^{-1} \mathbf{M}=\mathbf{I} \\
(\mathbf{M P Q})^{-1}=\mathbf{Q}^{-1} \mathbf{P}^{-1} \mathbf{M}^{-1}
\end{gathered}
$$

Overview

- Vectors and matrices
- Affine transformations
- Homogeneous coordinates

Affine Transformations

- Most important for graphics:
- rotation, translation, scaling
, Wolfram MathWorld:
- An affine transformation is any transformation that preserves collinearity (i.e., all points lying on a line initially still lie on a line after transformation) and ratios of distances (e.g., the midpoint of a line segment remains the midpoint after transformation).
- Implemented using matrix multiplications

Uniform Scale

- Uniform scale matrix in 2D

$$
\left[\begin{array}{cc}
s & 0 \\
0 & s
\end{array}\right] \mathbf{v}=\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]\left[\begin{array}{c}
v_{x} \\
v_{y}
\end{array}\right]=\left[\begin{array}{c}
v_{x}^{\prime} \\
v_{y}^{\prime}
\end{array}\right]=\mathbf{v}^{\prime}
$$

- Analogous in 3D:

$$
\left[\begin{array}{lll}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & s
\end{array}\right]
$$

Non-Uniform Scale

- Nonuniform scaling matrix in 2D

$$
\left[\begin{array}{cc}
s & 0 \\
0 & t
\end{array}\right] \mathbf{v}=\left[\begin{array}{ll}
s & 0 \\
0 & t
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]=\left[\begin{array}{c}
v_{x}^{\prime} \\
v_{y}^{\prime}
\end{array}\right]=\mathbf{v}^{\prime}
$$

Non-Uniform Scale in 3D

- Scale in 2D:

$$
\left[\begin{array}{ll}
s & 0 \\
0 & t
\end{array}\right]
$$

- Analogous in 3D: $\left[\begin{array}{lll}s & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & u\end{array}\right]$

Rotation in 2D

- Convention: positive angle rotates counterclockwise
- Rotation matrix

$$
\mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

$$
\mathbf{v}^{\prime}=\mathbf{R}(\theta) \mathbf{v}
$$

Rotation in 3D

Rotation around coordinate axes

$$
\begin{aligned}
& \mathbf{R}_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& \mathbf{R}_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& \mathbf{R}_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Rotation in 3D

- Concatenation of rotations around x, y, z axes

$$
\mathbf{R}_{x, y, z}\left(\theta_{x}, \theta_{y}, \theta_{z}\right)=\mathbf{R}_{x}\left(\theta_{x}\right) \mathbf{R}_{y}\left(\theta_{y}\right) \mathbf{R}_{z}\left(\theta_{z}\right)
$$

- $\theta_{x}, \theta_{y}, \theta_{z}$ are called Euler angles
- Result depends on matrix order!

$$
\mathbf{R}_{x}\left(\theta_{x}\right) \mathbf{R}_{y}\left(\theta_{y}\right) \mathbf{R}_{z}\left(\theta_{z}\right) \neq \mathbf{R}_{z}\left(\theta_{z}\right) \mathbf{R}_{y}\left(\theta_{y}\right) \mathbf{R}_{x}\left(\theta_{x}\right)
$$

Rotation about an Arbitrary Axis

- Complicated!
- Rotate point $[x, y, z]$ about axis $[u, v, w]$ by angle θ :

$$
\left[\begin{array}{l}
\frac{u(u x+v y+w z)(1-\cos \theta)+\left(u^{2}+v^{2}+w^{2}\right) x \cos \theta+\sqrt{u^{2}+v^{2}+w^{2}}(-w y+v z) \sin \theta}{u^{2}+v^{2}+w^{2}} \\
\frac{v(u x+v y+w z)(1-\cos \theta)+\left(u^{2}+v^{2}+w^{2}\right) y \cos \theta+\sqrt{u^{2}+v^{2}+w^{2}}(w x-u z) \sin \theta}{u^{2}+v^{2}+w^{2}} \\
\frac{w(u x+v y+w z)(1-\cos \theta)+\left(u^{2}+v^{2}+w^{2}\right) z \cos \theta+\sqrt{u^{2}+v^{2}+w^{2}}(-v x+u y) \sin \theta}{u^{2}+v^{2}+w^{2}}
\end{array}\right]
$$

How to rotate around a Pivot Point?

Rotation around origin:
$\mathbf{p}^{\prime}=\mathbf{R} \mathbf{p}$

Rotation around pivot point:
$\mathbf{p}^{\prime}=$?

Rotating point p around a pivot point

$\begin{array}{lll}\text { 1. Translation T } & \text { 2. Rotation } R & \text { 3. Translation } \mathrm{T}^{-1}\end{array}$

$$
\mathbf{p}^{\prime}=\mathbf{T}^{-1} \mathbf{R} \mathbf{T} \mathbf{p}
$$

Concatenating transformations

- Given a sequence of transformations $\mathbf{M}_{3} \mathbf{M}_{\mathbf{2}} \mathbf{M}$

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p} \\
\mathbf{M}_{t o t a l}=\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1} \\
\mathbf{p}^{\prime}=\mathbf{M}_{t o t a l} \mathbf{p}
\end{gathered}
$$

- Note: associativity applies

$$
\mathbf{M}_{t o t a l}=\left(\mathbf{M}_{3} \mathbf{M}_{2}\right) \mathbf{M}_{1}=\mathbf{M}_{3}\left(\mathbf{M}_{2} \mathbf{M}_{1}\right)
$$

Overview

- Vectors and matrices
- Affine transformations
- Homogeneous coordinates

Translation

- Translation in 2D

- Translation matrix $\mathrm{T}=$?

$$
v^{\prime}=\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]=T v=T\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]=\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]
$$

Translation

- Translation in 2D: 3×3 matrix

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Analogous in 3D: 4×4 matrix

$$
\left[\begin{array}{l}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
\boldsymbol{z}^{\prime} \\
\boldsymbol{w}
\end{array}\right]=\left[\begin{array}{lllc}
1 & 0 & 0 & \boldsymbol{t}_{\boldsymbol{x}} \\
0 & 1 & 0 & \boldsymbol{t}_{\boldsymbol{y}} \\
0 & 0 & 1 & \boldsymbol{t}_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
\boldsymbol{z} \\
\boldsymbol{w}
\end{array}\right]
$$

Homogeneous Coordinates

- Basic: a trick to unify/simplify computations.
- Deeper: projective geometry
- Interesting mathematical properties
- Good to know, but less immediately practical
* We will use some aspect of this when we do perspective projection

Homogeneous Coordinates

- Allows us to unify affine transformation calculations.
- Add an extra component. I for a point, 0 for a vector:

$$
\mathbf{p}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right] \quad \overrightarrow{\mathbf{v}}=\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right]
$$

- Combine \mathbf{M} and \mathbf{d} into single 4×4 matrix:

$$
\left[\begin{array}{cccc}
m_{x x} & m_{x y} & m_{x z} & d_{x} \\
m_{y x} & m_{y y} & m_{y z} & d_{y} \\
m_{z x} & m_{z y} & m_{z z} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Let's see what happens when we multiply now...

Homogeneous Point Transform

- Transform a point:

$$
\begin{gathered}
\left.\left[\begin{array}{c}
p_{x}^{\prime} \\
p_{y}^{\prime} \\
p_{z}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
m_{x x} & m_{x y} & m_{x z} & d_{x} \\
m_{y x} & m_{y y} & m_{y z} & d_{y} \\
m_{z x} & m_{z y} & m_{z z} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]=\left[\begin{array}{c}
m_{x x} p_{x}+m_{x y} p_{y}+m_{x z} p_{z} \\
m_{y x} p_{x}+m_{y y} p_{y}+m_{y z} p_{z} \\
m_{z x} p_{x}+m_{z y} p_{y}+m_{z z} p_{z}+ \\
0+0+0+1
\end{array}\right]+\begin{array}{c}
d_{x} \\
d_{y} \\
d_{z}
\end{array}\right] \\
\begin{array}{l}
\mathbf{M}\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right]+\mathbf{d}
\end{array},
\end{gathered}
$$

Top three rows are the affine transform!

- Bottom row stays I

Homogeneous Vector Transform

- Transform a vector:

$$
\begin{gathered}
{\left[\begin{array}{c}
v_{x}^{\prime} \\
v_{y}^{\prime} \\
v_{z}^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{cccc}
m_{x x} & m_{x y} & m_{x z} & d_{x} \\
m_{y x} & m_{y y} & m_{y z} & d_{y} \\
m_{z x} & m_{z y} & m_{z z} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right]=\left[\begin{array}{c}
{\left[\begin{array}{l}
m_{x x} v_{x}+m_{x y} v_{y}+m_{x z} v_{z}+0 \\
m_{y x} v_{x}+m_{y y} v_{y}+m_{y z} v_{z}+0 \\
m_{z x} v_{x}+m_{z y} v_{y}+m_{z z} v_{z}+0 \\
0+0+0+0
\end{array}\right]} \\
\mathbf{M}\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]
\end{array}, ~\right.}
\end{gathered}
$$

- Top three rows are the linear transform
- Displacement d is properly ignored
- Bottom row stays 0

Homogeneous Arithmetic

- Correct operations always end in 0 or I

$$
\begin{aligned}
& \text { vector+vector: }\left[\begin{array}{l}
\vdots \\
0
\end{array}\right]+\left[\begin{array}{l}
\vdots \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\vdots \\
0
\end{array}\right] \\
& \text { vector-vector: }\left[\begin{array}{l}
\vdots \\
0
\end{array}\right]-\left[\begin{array}{l}
\vdots \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\vdots \\
0
\end{array}\right] \\
& \text { scalar*vector: } \quad s\left[\begin{array}{c}
\vdots \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\vdots \\
0
\end{array}\right] \\
& \text { point+vector: }\left[\begin{array}{l}
\vdots \\
1
\end{array}\right]+\left[\begin{array}{l}
\vdots \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\vdots \\
1
\end{array}\right] \\
& \text { point-point: } \quad\left[\begin{array}{l}
\vdots \\
1
\end{array}\right]-\left[\begin{array}{l}
\vdots \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\vdots \\
0
\end{array}\right] \\
& \text { point+point: }\left[\begin{array}{l}
\vdots \\
1
\end{array}\right]+\left[\begin{array}{l}
\vdots \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\vdots \\
2
\end{array}\right] \\
& \text { scalar*point: } \quad s\left[\begin{array}{l}
\vdots \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\vdots \\
s
\end{array}\right] \\
& \left\{\begin{array}{c}
\text { weighted average } \\
\text { affine combination }
\end{array}\right\} \text { of points: } \frac{1}{3}\left[\begin{array}{l}
\vdots \\
1
\end{array}\right]+\frac{2}{3}\left[\begin{array}{l}
\vdots \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\vdots \\
1
\end{array}\right]
\end{aligned}
$$

Homogeneous Transforms

- Rotation, Scale, and Translation of points and vectors unified in a single matrix transformation:

$$
\mathbf{p}^{\prime}=\mathbf{M} \mathbf{p}
$$

- Matrix has the form:
, Last row always 0,0,0, I

$$
\left[\begin{array}{cccc}
m_{x x} & m_{x y} & m_{x z} & d_{x} \\
m_{y x} & m_{y y} & m_{y z} & d_{y} \\
m_{z x} & m_{z y} & m_{z z} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Transforms can be composed by matrix multiplication
- Same caveat: order of operations is important
- Same note: transforms operate right-to-left

Normal Transformation

- Why don't normal vectors always get transformed correctly with geometry?

- Middle image: normal scaled like geometry gives wrong result https://paroj.github.io/g|tut/|l|umination/Tut09\ Normal\ Transformation.html

4x4 Scale Matrix

- Generic form:

$$
\left[\begin{array}{llll}
s & 0 & 0 & 0 \\
0 & t & 0 & 0 \\
0 & 0 & u & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Inverse:

$$
\left[\begin{array}{cccc}
\frac{1}{s} & 0 & 0 & 0 \\
0 & \frac{1}{t} & 0 & 0 \\
0 & 0 & \frac{1}{u} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

4x4 Rotation Matrix

- Generic form:

$$
\left[\begin{array}{cccc}
r_{1} & r_{2} & r_{3} & 0 \\
r_{4} & r_{5} & r_{6} & 0 \\
r_{7} & r_{8} & r_{9} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Inverse:

$$
\left[\begin{array}{cccc}
r_{1} & r_{4} & r_{7} & 0 \\
r_{2} & r_{5} & r_{8} & 0 \\
r_{3} & r_{6} & r_{9} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

4x4 Translation Matrix

Generic form:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -t_{x} \\
0 & 1 & 0 & -t_{y} \\
0 & 0 & 1 & -t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Quaternions

Rotation Calculations

- Intuitive approach: Euler Angles
- Simplest way to calculate rotations
- Defines rotation by 3 sequential rotations about coordinate axes
- Example for rotation order Z-Y-X:

http://www.globalspec. com/reference/49379/203279/3-3-euler-angles

Problems With Euler Angles

- Problems with Euler angles:
- No standard for order of rotations
- Gimbal Lock, occurs in certain object orientations
, Video: https://www.youtube.com/watch?v=rrUCBOIJdt4
- Better: rotation about arbitrary axis (no Gimbal lock)
- Can be done with 4×4 matrix
- But: smoothly interpolating between two orientations is difficult
- \rightarrow Quaternions

Quaternion Definition

- Given angle and axis of rotation:
- a: rotation angle
- $\{n x, n y, n z\}$: normalized rotation axis
- Calculation of quaternion coefficients w, x, y, z :
b $\mathrm{w}=\cos (\mathrm{a} / 2)$
b $x=\sin (a / 2) * n x$
- $y=\sin (a / 2) * n y$
b $z=\sin (a / 2) * n z$

Useful Quaternions

w	x	y	z	Description
1	0	0	0	Identity quaternion, no rotation
0	1	0	0	180° turn around X axis
0	0	1	0	180° turn around Y axis
0	0	0	1	180° turn around Zaxis
sqrt(0.5)	sqrt(0.5)	0	0	90° rotation around X axis
sqrt(0.5)	0	sqrt(0.5)	0	90° rotation around Y axis
sqrt(0.5)	0	0	sqrt(0.5)	90° rotation around Z axis
sqrt(0.5)	-sqrt(0.5)	0	0	-90° rotation around X axis
sqrt(0.5)	0	-sqrt(0.5)	0	-90° rotation around Y axis
sqrt(0.5)	0	0	-sqrt(0.5)	-90° rotation around Z axis

Quaternions in GLM

- Create a quaternion for a 90 degree rotation about the y axis:
| glm::quat rot = glm::angleAxis(glm::radians(90.f), glm::vec3(0.f, I.f, 0.f));
- Cast the quaternion into a 4×4 matrix:
| glm::mat4 rotate = glm::mat4_cast(rot);

Quaternions: Further Reading

- Rotating Objects Using Quaternions:
- http://www.gamasutra.com/view/feature/I3|686/rotating_objec ts using_quaternions.php
- Quaternions in GLM:
- http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/
- Quaternions in Unity 3D:
- https://docs.unity3d.com/ScriptReference/Quaternion.html
- Quaternions in OpenSceneGraph :
- http://www.openscenegraph.org/index.php/documentation/kno wledge-base/40-quaternion-maths

