CSE 165 - Winter 2014

CSE 190: 3D User Interaction

Lecture #3: Stereo Jürgen Schulze

Announcements

- Homework Assignment #1
 - Due date: January 24th at 1:30pm
 - To be presented in CSE lab 260
- Reminder: paper presentations
 - Email title + date to instructor by Friday 1/17
- Pickup Kinect in office hour after class

Overview continued

3D UI Design Philosophies

- o Artistic approach: Base design decisions on
 - o intuition about users, tasks, and environments
 - o heuristics, metaphors, common Sense
 - aesthetics
 - adaptation/inversion of existing interfaces
- Scientific approach: Base design decisions on
 - formal characterization of users, tasks, and environments
 - quantitative evaluation results
 - performance requirements
 - o examples: taxonomies, formal experimentation

Applications

- Architecture / CAD
- Education
- Manufacturing
- Medicine
- Simulation / Training
- Entertainment Games!
- Design / Prototyping
- Information / Scientific Visualization
- Collaboration / Communication

3D UI RoadMap

Areas influencing 3D UIs

Theoretical and social background

- Human spatial perception, cognition, and action
- HCI and UI Design
- · Popular Media

3D UIs

3D interaction techniques and interface components

- Interaction techniques for universal tasks
- Interaction techniques for complex or composite tasks
- 3D interaction techniques using 2D devices
- 3D UI widgets

3D UI evaluation

- · Evaluation of devices
- Evaluation of interaction techniques
- Evaluation of complete 3D Uls or applications
- Specialized evaluation approaches
- Studies of phenomena particular to 3D UIs

Areas impacted by 3D UIs

Application areas

- · Simulation and training
- Education
- Entertainment
- Art
- Visualization
- Architecture and construction
- · Medicine and psychiatry
- Collaboration

Technological background

- Interactive 3D graphics
- 3D visualization
- · 3D input devices
- · 3D display devices
- · Simulator systems
- · Telepresence systems
- · Virtual reality systems

3D UI design approaches

- Hybrid interaction techniques
- . Two-handed interaction
- Multimodal interaction
- 3D interaction aids
- 3D UI design strategies

3D UI software tools

- Development tools for 3D applications
- Specialized development tools for 3D interfaces
- · 3D modeling tools

Standards

- For interactive 3D graphics
- For UI description

Reciprocal impacts

- On graphics
- On HCI
- On psychology

Interaction Workflow

Quaternions

Rotation Calculations

- Simplest way to calculate rotations: Euler angles
- Euler angles define rotation by 3 rotations about coordinate axes
- Typical problem with Euler angles: Gimbal Lock, occurs in certain object orientations
 - Video (play until 1:12)
 - http://www.youtube.com/watch?v=zc8b2Jo7mno
- Better than Euler angles: 4x4 rotation matrices
 - Problem: 16 numbers required to specify rotation
- Quaternions: greatly improve rotation calculations

Quaternions

- OSG defines mathematical operators for quaternions to add, subtract, multiply, etc.
- In OSG, quaternions can be specified by rotation angle and axis:
 - o osg::Quat(value_type angle, const Vec3d &axis)
- Or mathematically:
 - o osg::Quat(value_type x, value_type y, value_type z, value_type w)

Quaternion Definition

- [W, X, Y, Z]
 - \circ w = cos(a/2)
 - \circ x = $\sin(\alpha/2)$ * nx
 - $y = \sin(a/2) * ny$
 - $z = \sin(\alpha/2) * nz$
- o a: angle of rotation
- {nx,ny,nz}: normalized axis of rotation

Useful Quaternions

w	x	У	z	Description
1	0	0	0	Identity quaternion, no rotation
0	1	0	0	180° turn around X axis
0	0	1	0	180° turn around Y axis
0	0	0	1	180° turn around Z axis
sqrt(0.5)	sqrt(0.5)	0	0	90° rotation around X axis
sqrt(0.5)	0	sqrt(0.5)	0	90° rotation around Y axis
sqrt(0.5)	0	0	sqrt(0.5)	90° rotation around Z axis
sqrt(0.5)	-sqrt(0.5)	0	0	-90° rotation around X axis
sqrt(0.5)	0	-sqrt(0.5)	0	-90° rotation around Y axis
sqrt(0.5)	0	0	-sqrt(0.5)	-90° rotation around Z axis

Quaternions: Further Reading

- Quaternions in Ogre3D:
 - http://www.ogre3d.org/tikiwiki/Quaternion+ and+Rotation+Primer
- Quaternions in OSG:
 - http://www.openscenegraph.org/projects/ osg/wiki/Support/Maths/QuaternionMaths

3D Displays

Introduction To Displays

- Display: device which presents perceptual information
- Often 'display' used to mean 'visual display'
- Goal: display devices which accurately represent perceptions in simulated world

Lecture Outline

- Visual System
- Depth Cues
- Visual Display Characteristics
- Visual Display Examples
 - monitors
 - surround screen displays
 - workbenches
 - head mounted displays
 - arm-mounted displays
 - virtual retinal displays
 - autostereoscopic displays

Depth Cues – How Do We See 3D?

- Monocular/static cues
- Occulomotor cues (Accommodation/Convergence)
- Motion Parallax
- Binocular Disparity and Stereopsis

Monocular/Static Cues

• Relative Size

Height relative to horizon

Monocular/Static Cues

Occlusion and Linear Perspective

Monocular/Static Cues

Shading, Lighting, and Texture

Oculomotor Cues

- Accommodation physical stretching and relaxing of eye lens
 Convergence rotation of viewer's eyes so images can be fused together at varying distances

Accomodation

Convergence

Motion Parallax

• Stationary viewer vs. moving viewer

Binocular Disparity and Stereopsis

- Each eye gets a slightly different image
- Only effective within a few feet of viewer
- Many implementation schemes

Accommodation-Convergence Mismatch

 Standard stereo displays confuse the brain based on oculomotor cues

 Only "true 3D" displays can provide these correctly

Visual Display Characteristics

- Field of View (FOV) and Field of Regard (FOR)
 - FOR amount of physical space surrounding viewer in which visual images appear
 - FOV maximum visual angle seen instantaneously
- Spatial Resolution
 - number of pixels and screen size
- Screen Geometry
 - rectangular, hemispherical, etc...
- Light Transfer Mechanism
 - front projection, rear projection, laser light, etc...
- Refresh Rate
 - o not the same as frame rate
- Ergonomics

Stereo Monitor

 Ordinary workstation equipped with emitter and shutter glasses

Stereo Monitor – Advantages

- Least expensive in terms of additional hardware over other output devices
- Allows usage of virtually any input device
- Good resolution
- User can take advantage of keyboard and mouse

Stereo Monitor – Disadvantages

- Not very immersive
- User really cannot move around
- Does not take advantage of peripheral vision
- Stereo can be problematic
- Occlusion from physical objects can be problematic

Surround Screen VE

- Has 3 to 6 large screens
- Puts user in a room for visual immersion
- Usually driven by a single or group of powerful graphics engines

The StarCAVE

- 18 Dell XPS 710 PCs
- Dual Nvidia GeForce 285 graphics cards
- CentOS Linux
- 34 JVC HD2k projectors (1920x1080 pixels):
 - ~34 megapixels per eye
- 360 degrees immersion
- Passive stereo, circular polarization
- 15 screens on 5 walls, ~8 x 4 foot each, plus floor projection
- 4-camera optical tracking system

NexCAVE

- 14 42" JVC Xpol displays:
 LCD panels with polarizing filters,
 1920x1080 pixels
- 8 rendering PCs
- Nvidia GeForce 480 GPUs
- 2-camera ART TrackPack optical tracking system

