
CSE 190
Discussion 6

PA3: CAVE Simulator

Agenda

● PA3 Recap
● FrameBuffer Usage
● Projection for CAVE Screen

○ Math
○ Implementation

● Viewport Switch
○ Debug Wireframe Mode

● Extra Credit

PA3 Recap

● Project 3 Due Date: May 17th 2pm (This Friday!)
○ If you have scheduling conflicts, let us know

● CAVE Simulator
○ Render scene to different textures
○ Use these to texture 3 different quads to emulate screens

● Other features
○ Switch Viewpoint to controller
○ Freeze/unfreeze the Viewpoint
○ Wireframe debug mode

http://ivl.calit2.net/wiki/index.php/Project3S19

Framebuffer Usage

Framebuffer Usage

● Framebuffer Recap:
○ A container to hold the stuff you want to draw

(attachments)
○ Attachment types:

▪ Color -> texture
▪ Depth -> renderbuffer

○ Allows up to render scene to a texture

● See last weeks Discussion slides for more details
● Can also look at InitGL() in RiftApp class for an example

Framebuffer Usage

● Initialize framebuffer for each of your quads/screens
○ Generate the framebuffer
○ Initialize the texture and attach to the framebuffer
○ Initialize the renderbuffer and attach to the framebuffer

● Note:
○ Attachment type for texture and renderbuffer

Framebuffer Usage

● When drawing (for each eye):
○ Bind to your framebuffer
○ Clear background and color/depth

bits
○ Draw stuff that you want to

render to your texture
○ Unbind your framebuffer🟎
○ Render your CAVE screen (the

quad)

Framebuffer Usage

● Note:
○ GLFW has its default framebuffer to draw onto window
○ So whenever you do:

○ You are binding back to the default frame buffer.

✷ unbinding your framebuffer:
○ Don’t unbind to the default framebuffer!
○ Instead, unbind to _fbo, which is the framebuffer used by

the minimal example to render to your HMD

Rendering to the Texture

● NOTE:
○ The texture width and height need to match what is used in

glViewport() from RiftApp class

● So when you are rendering your scene:
○ Save the glViewport parameters before rendering to FB
○ Set the glViewport to match the texture size
○ Render the scene onto the texture
○ Reset the viewport
○ Render the Cave

Projection Matrix for CAVE
Screens

Projection Matrix for CAVE Screens

● Reminder a typical projective matrix assumes we are right in
front of the screen

● We need to be able to be off-center

Projection Matrix for CAVE Screens

● Review of what we did to get the projection matrix

● This gives you the projection matrix (P′) for each screen

Projection Matrix for CAVE Screens - P

● OpenGL gives us a wonderful function:

● We need to compute l, r, b, t.
○ Last discussion gives step-by-step

explanation of how to compute
these frustum parameters from Pa,
Pb, & Pc

● Near and far define the near/far clipping plane
○ Depends on how you want to clip user’s view

http://ivl.calit2.net/wiki/images/7/70/CSE190_S19_Discussion5.pdf

Projection Matrix for CAVE Screens - P

● Since each screen has different translation/rotation, the
resultant projection matrix should be different.

● Where does the difference come from?

Projection Matrix for CAVE Screens - P

● To get correct Pa, Pb, Pc for each screen:
○ Pa = model_matrix * glm::vec4(PA.x, PA.y, PA.z, 1.0f);
○ Same for Pb and Pc

Projection Matrix for CAVE Screens - P

1. Compute basis vectors for screen space

2. Calculate vectors from eye position to the screen corners
3. Calculate distance from eye position to the screen space origin

Projection Matrix for CAVE Screens - P

 2.

3.

Projection Matrix for CAVE Screens - P

4. Calculate the frustum extents at the near plane

Projection Matrix for CAVE Screens - P

● Now that we have our frustum parameters can calculate the P
matrix by simply calling:

Projection Matrix for CAVE Screens - MT

● Review of the formula for MT

● We already calculated v
r
, v

u
, and v

n
● So all we need to do is create a mat4 for MT and plug those

vectors in!

Projection Matrix for CAVE Screens - T

● Review of the formula for T

● Reminder:
○ p

e
 = eye position

○ T = translation matrix by -p
e

Projection Matrix for CAVE Screens

● Now take a look at the formula again

● Note:
○ P′ is the actual projection that we want to return, NOT P

● What’s the next step when I get the projection?
○ Draw your scene to your framebuffer R
○ Render them onto the texture of your screen

Viewport Switch

Viewport Switch

● Currently your View position is coming from the Position and
Orientation of your HMD

● Need to be able to switch the view position to your right
controller
○ This is simulating being a spectator in a CAVE with another

person wearing the head tracker
○ Your controller is acting as that person’s head

Viewport Switch

● Note:
○ When your rotate your head, the scene on the screens

should not rotate
○ So when you rotate your controller in this mode, the scene

should not rotate
○ You still have two “eyes” on your controller in this mode

Viewport Switch

● Although rotation is not reflected in the scene, you are still
expected to see some changes while rotating controller:
○ Controller’s forward is perpendicular to your head forward

▪ The image becomes mono
○ Controller’s forward is in reverse direction

▪ The image is inverted stereo

Viewport Switch- Debug
Wireframe Mode

Viewport Switch- Debug Wireframe Mode

● The point of this is to:
○ Visualize the two “eye positions” of your controller
○ Visualize the six pyramids

▪ Green pyramids for left eye, red for right eye

Viewport Switch- Debug Wireframe Mode

P.S. The dots are not required to be rendered

Green Dot: Left Eye Position (On the
controller)

Red Dot: Right Eye Position (On the
controller)

Yellow Dot: Controller’s Position

Viewport Switch- Debug Wireframe Mode

● Note:
○ You need to draw 6 pyramids to both eyes

▪ NOT 3 pyramids for each eye
▪ Meaning you should see all 6 pyramids in both eyes

○ Use GL_LINES and GL_TRIANGLES to draw lines/surface
▪ If drawing surface, you might want to adjust the alpha value

○ If you do not hold the trigger (The Viewport Is Not Switching), you
should be seeing red/green lines going out from your eyes.

● These should be rendered in Rift space
○ Meaning they are not rendered to your framebuffer

Extra Credit

Extra Credit - Simulate One Screen Failing

● Press button to render one random black square screen

(just one eye, not an entire wall - assuming using passive

stereo)

● Reduce the brightness of the entire quad/screen based on the
angle between you and the screen (0 - 90 degrees)
○ This will make the entire screen darker or brighter
○ 5 points

Extra Credit - Brightness falloff of LCD

α

● Reduce the brightness of each individual pixel based on the angle
between you and that pixel (0 - 90 degrees)
○ Done through the shader
○ Brightest at the pixels that are looking directly to the eye

▪ ie. normal to the frame
○ 5 points

Extra Credit - Brightness falloff of LCD

Extra Credit - Vignetting Projected Screens

● Imaginary projectors 2.4 m
behind screen projecting
onto the center of the screen

● Use shader
● Note:

○ Brightest point moves
around depending on
where the line from eye
to projector intersects
the screen

Brightest

Dark

Brightest

Da
rk

Dark

Polarized direction for glasses:
Polarized direction for cave screens:

Extra Credit - Linear polarization effect

LL
L

RR
R

L/R
L/R

L/R

L/RL/R

L/R

QUESTIONS?

