CSE 167: Introduction to Computer Graphics Lecture #11: Performance Optimization

Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2015

Announcements

- Homework 5 due tomorrow at Ipm
- Homework 6 due next Friday

Lecture Overview

Performance Optimization

- Culling
- Level of Detail Techniques

Culling

Goal:

Discard geometry that does not need to be drawn to speed up rendering

- Types of culling:
 - View frustum culling
 - Occlusion culling
 - Small object culling
 - Backface culling
 - Degenerate culling

Occlusion Culling

Geometry hidden behind occluder cannot be seen

Many complex algorithms exist to identify occluded geometry

Images: SGI OpenGL Optimizer Programmer's Guide

Video

Umbra 3 Occlusion Culling explained

http://www.youtube.com/watch?v=5h4QgDBwQhc

Small Object Culling

- Object projects to less than a specified size
 - Cull objects whose screen-space bounding box is less than a threshold number of pixels

Backface Culling

- Consider triangles as "one-sided", i.e., only visible from the "front"
- Closed objects
 - If the "back" of the triangle is facing the camera, it is not visible
 - Gain efficiency by not drawing it (culling)
 - Roughly 50% of triangles in a scene are back facing

Backface Culling

• Convention:

Triangle is front facing if vertices are ordered counterclockwise

- OpenGL allows one- or two-sided triangles
 - One-sided triangles: glEnable(GL_CULL_FACE); glCullFace(GL_BACK)
 - Two-sided triangles (no backface culling): glDisable(GL_CULL_FACE)

Backface Culling

Compute triangle normal after projection (homogeneous division)

$$\mathbf{n} = (\mathbf{p}_1 - \mathbf{p}_0) \times (\mathbf{p}_2 - \mathbf{p}_0)$$

- Third component of n negative: front-facing, otherwise back-facing
 - Remember: projection matrix is such that homogeneous division flips sign of third component

Degenerate Culling

Degenerate triangle has no area

- Vertices lie in a straight line
- Vertices at the exact same place
- Normal n=0

Source: Computer Methods in Applied Mechanics and Engineering, Volume 194, Issues 48–49

Level-of-Detail Techniques

Don't draw objects smaller than a threshold

- Small feature culling
- Popping artifacts
- Replace 3D objects by 2D impostors
 - Textured planes representing the objects

Impostor generation

Adapt triangle count to projected size

Original vs. impostor

Size dependent mesh reduction (Data: Stanford Armadillo)

