
CSE 167
Discussion #7
Control, control, you must lerp control

Bezier Curves
● The general form of a Bezier Curve can have any

number of control points
● In general, the more control points used to generate a

curve, the more accurately it can represent various non-
polynomial curves

Bezier Curves
● There is a fairly massive diminishing return in the

computing world: the amount of accuracy gained from
each additional control point is terribly small in
comparison to the increase in compute time needed to
evaluate the curve

Bezier Curves
● So we make a compromise: use 4 control points and

hope for the best!

Bezier Curves
● Starting with 4 control points , and a

time t, we can interpolate all of the control points at time
t using this quite large, and potentially scary equation:

Bezier Curves
● Note that what was n in the general equation has now

been replaced with 3. This is due to us using 4 control
points. n is always the number of control points - 1.

Bezier Curves
● Remembering that combinations expand to:

Feel the Bernstein
● At this point we notice that given some time t that the

leading coefficient evaluates to a constant scalar, so we
can replace it with a convenient function Ci(t), the
Bernstein Polynomial

Bezier Curves
● Substituting back into our equation:

Bezier Curves
● This is nothing more than adding together 4 vectors that

have each been multiplied by a scalar weight!

Bezier Curves
● Which is a matrix-vector product in disguise!:

Selection

Selection Buffers
● Each selectable object in your scene will have an id

ID: 0

ID: 1

ID: 3

ID: 2

Selection Buffers
● On mouse click, re-render the scene with a selection

shader, colored by the ID
● How? Use uniforms!

uniform uint id;

Selection Buffers
● Read the pixel color at that point

→ Retrieve the ID

You clicked 3!

selectionDraw(GLuint shaderProgram)

{

 ...

 glPointSize(10.0f); // Make points larger for easier
selection

 GLuint idLocation = glGetUniformLocation(shaderProgram,
"id");

 glUniform1ui(idLocation, ID);

 ...

}

#version 330 core

uniform uint id;

out vec4 color;

void main()

{

 color = vec4(id/255.0f, 0.0f, 0.0f, 0.0f);

}

A Selection Shader
shader.fragControl.cpp

Window.cpp (pseudocode)
1. When mouse is clicked, draw all selectables with

selection shader.
2. Read the pixel colored in by the shader
3. Recover ID from that pixel

#version 330 core

uniform uint id;

out vec4 color;

void main()

{

 color = vec4(id/255.0f, 0.0f, 0.0f, 0.0f);

}

A Selection Shader
shader.frag Window.cpp

void Window::mouse_button_callback(GLFWwindow* window, int
button, int action, int mods)

{

 if (button == GLFW_MOUSE_BUTTON_LEFT && action ==
GLFW_PRESS)

 {

 for(auto & selectable : selectables)

 {

 selectable->selectionDraw(selectionShader);

 }

 unsigned char pix[4];

 glReadPixels(xpos, height - ypos, 1, 1, GL_RGBA,
GL_UNSIGNED_BYTE, &pix);

 selected = selectable[(unsigned int) pix[0]];

 ...

}

Raycasting
● Shoot a ray from the camera towards the mouse
● Find the first object that intersects with the ray

That object is now selected!
● A bit more math heavy way of selecting than selection

buffer
● If you want to learn more, take CSE 168 or read this

tutorial:
http://antongerdelan.net/opengl/raycasting.html

http://antongerdelan.net/opengl/raycasting.html
http://antongerdelan.net/opengl/raycasting.html

