
CSE 167:

Introduction to Computer GraphicsIntroduction to Computer Graphics

Lecture #18: Volume Rendering

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2011

Announcements

� Please check Ted grades for accuracy. All grades except
final project and final exam should be there.

� Final project to be presented on
Friday, Dec 2nd, between 1 and 3pm in room 1202

� What time constraints do groups have?

� Need to know which computer used for presentation� Need to know which computer used for presentation

� If lab PC: which OS?

� Final Exam Dec 8th 3-6pm in regular classroom (Peterson Hall
104)

2

Demo

� Geisel Returns Home

� By Robert Pardridge, Christopher
Jenkins, Kevin Reynolds

� “It is well known that Geisel
Library resembles a huge spaceship.
Almost every UCSD student has Almost every UCSD student has
this thought at least once while
walking past the library. “

3

Lecture Overview

� Particle Systems

� Collision Detection

� Volume Rendering

4

Particle Systems

� Used for:

� Fire/sparks

� Rain/snow

� Water spray

� Explosions

Galaxies� Galaxies

5

Internal Representation
� Particle system is collection of a number of individual elements (particles)

� Controls a set of particles which act autonomously but share some
common attributes

� Particle Emitter: Source of all new particles

� 3D point

� Polygon mesh: particles’ initial velocity vector is normal to surface

� Particle attributes:� Particle attributes:

� position (3D)

� velocity (vector: speed and direction)

� color + opacity

� lifetime

� size

� shape

� weight

6

Dynamic Updates

� Particles change position and/or attributes with time

� Initial particle attributes often created with random numbers

� Frame update:

� Parameters: simulation of particles, can include collisions with geometry

� Forces (gravity, wind, etc) accelerate a particle

� Acceleration changes velocity� Acceleration changes velocity

� Velocity changes position

� Rendering: display as

� OpenGL points

� (Textured) billboarded quads

� Point sprites

7

Source: http://www.particlesystems.org/

Point Sprite

� Screen-aligned element of variable size

� Defined by single point

� Sample code:

glTexEnvf(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);

glEnable(GL_POINT_SPRITE);

glBegin(GL_POINTS);

glVertex3f(position.x, position.y, position.z);glVertex3f(position.x, position.y, position.z);

glEnd();

glDisable(GL_POINT_SPRITE);

8

Demo

� Source:
http://www.particlesystems.org/Distrib/Particle221Demos.zip

9

References

� Free particle systems API:

� http://particlesystems.org/

� On-line tutorial: http://www.naturewizard.com/tutorial08.html

� Initial scientific paper:

� Reeves: “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”,
ACM Transactions on Graphics (TOG) Volume 2 Issue 2, April 1983

� Article with source code:

� Jeff Lander: “The Ocean Spray in Your Face”, Game Developer, July 1998,
http://www.darwin3d.com/gamedev/articles/col0798.pdf

� John Van Der Burg: “Building an Advanced Particle System”, Gamasutra, June
2000

� http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.p
hp

10

Lecture Overview

� Particle Systems

� Collision Detection

� Volume Rendering

11

Collision Detection

� Possible goals:

� Physically correct simulation
of collision of objects

� Not covered here

� Determine if two objects
intersectintersect

� Slow because of exponential
growth O(n2):

� # collision tests = n*(n-1)/2

12

Intersection Testing

� Purpose:

� Keep moving objects on the ground

� Keep moving objects from going through walls, each other, etc.

� Goal:

� Believable system, does not have to be physically correct

� Priority:

� Computationally inexpensive

� Typical approach:

� Spatial partitioning

� Object simplified for collision detection by one or a few

� Points

� Spheres

� Axis aligned bounding box (AABB)

� Pairwise checks between points/spheres/AABBs and static geometry

13

Sweep and Prune Algorithm

� Sorts bounding boxes

� Not intuitively obvious how to sort bounding boxes in 3-space

� Dimension reduction approach:

� Project each 3-dimensional bounding box onto the x,y and z axes

� Find overlaps in 1D: a pair of bounding boxes can overlap if and only if
their intervals overlap in all three dimensionstheir intervals overlap in all three dimensions

� Construct 3 lists, one for each dimension

� Each list contains start/end point of intervals corresponding to that dimension

� By sorting these lists, we can determine which intervals overlap

� Reduce sorting time by keeping sorted lists from previous frame, changing
only the interval endpoints

� Alternative: project bounding boxes onto coordinate axis
planes and look for overlaps in 2D

14

Collision Map (CM)

� 2D map with information
about where objects can go
and what happens when they
go there

� Colors indicate different
types of locationstypes of locations

� Map can be computed from
3D model, or hand drawn
with paint program

� Granularity: defines how
much area (in object space)
one CM pixel represents

15

References

� I-Collide:

Interactive and exact collision detection library for large � Interactive and exact collision detection library for large
environments composed of convex polyhedra

� http://gamma.cs.unc.edu/I-COLLIDE/

� OZ Collide:

� Fast, complete and free collision detection library in C++

� Based on AABB tree

� http://www.tsarevitch.org/ozcollide/

16

Lecture Overview

� Particle Systems

� Collision Detection

� Volume Rendering

17

What is Volume Rendering

� AVolume is a 3D array of voxels (volume elements, 3D
equivalent of pixels)

� 3D images produced by CT, MRI, 3D mesh-based
simulations are easily represented as volumes

� The Voxel is the basic element of the volume
Typical volume size may be 1283 voxels, but any other size Typical volume size may be 1283 voxels, but any other size
is acceptable.

� Volume Rendering means rendering the voxel-based data
into a viewable 2D image.

18

Volume Data Types

� 3D volume data are represented by a finite number of
cross-sectional slices (3D grid)cross-sectional slices (3D grid)

� Each voxel stores a data value

� Single bit: binary data set

� Typical: 8 or 16 bit integers

� Simulations often generate floating point

� Sometimes multi-valued (multiple data values per voxel), for
instance RGB, multi-channel confocal microscopy

19

Applications: Medicine

CT Angiography:
Dept. of Neuroradiology
University of Erlangen,
Germany

CT Human Head:
Visible Human Project,
US National Library of
Medicine, Maryland,
USA

20 This and some of the following slides are from a Eurographics 2006 course by Dr. Christof
Rezk Salama, Computer Graphics and Multimedia Group, University of Siegen, Germany

Applications: Geology

Deformed Plasticine Model,
Applied Geology,
University of Erlangen

Muschelkalk:
Paläontologie,
Virtual Reality Group,
University of Erlangen

21

Applications: Archaeology

Hellenic Statue of Isis

3rd century B.C.
ARTIS, University of Erlangen-
Nuremberg, Germany

Sotades Pygmaios Statue

5th century B.C
ARTIS, University of Erlangen-
Nuremberg, Germany

22

Applications

Material Science,

Quality Control

Biology

Micro CT, Compound Material
Material Science Department, University
of Erlangen

Biological sample of soil, CT
Virtual Reality Group,
University if Erlangen

23

Computational Science and Engineering

Applications

24

Methods of Representation

� Polygonal - Triangle Mesh

� Freeforms - parametric curves, patches...

� Solid Modelling - CGS (Constructive Solid Geometry)

� Direct Volume Rendering� Direct Volume Rendering

25

Why Direct Volume Rendering?

Pros Cons

� Natural representation of
CT/MRI images

� Transparency effects (Fire,

� Huge data sets

� Computationally
expensiveTransparency effects (Fire,

Smoke…)

� High quality

expensive

� Cannot be embedded
easily into polygonal scene

26

Volume Rendering Outline

Data Set 3D Rendering Classification

in real-time on

commodity graphics hardware

27

Rendering Methods

There are two categories of volume rendering algorithms:

1. Ray casting algorithms (Object Order)
� Basic ray-casting
� Using octrees

2. Plane Composing (Image Order)
� Basic slicing with 2D textures� Basic slicing with 2D textures
� Shear-Warp factorization
� Translucent textures with image-aligned 3D textures

28

Ray Casting

� Software Solution

Image Plane

Eye

Data Set

Numerical Integration

Resampling

High Computational Load

Eye

29

Rendering Methods

There are two categories of volume rendering algorithms:

1. Ray casting algorithms (Object Order)
� Basic ray-casting
� Using octrees

2. Plane Composing (Image Order)
� Basic slicing with 2D textures� Basic slicing with 2D textures
� Shear-Warp factorization
� Translucent textures with image-aligned 3D textures

30

Ray Casting

� Software Solution

Image Plane

Eye

Data Set

Numerical Integration

Resampling

High Computational Load

Eye

31

Plane Compositing

Proxy geometry (Polygonal Slices)

32

Compositing

� Maximum Intensity Projection
No emission/absorption
Simply compute maximum value along a ray

Emission/Absorption Maximum Intensity Projection

33

2D Textures

Decompostition into axis-aligned slices

Draw the volume as a stack of 2D textures

Bilinear Interpolation in Hardware

3 copies of the data set in memory

34

2D Textures: Drawbacks

Sampling rate is inconsistent

d
d´ ≠ d

Emission/absorption slightly incorrect

Super-sampling on-the-fly impossible

35

3D Textures

R

R G B A

G
B

For each fragment:

interpolate the

texture coordinates

(barycentric)

Texture-Lookup:
interpolate the

texture color

(trilinear)

36

3D Textures

Slices parallel to the image plane

3D Texture: Volumetric Texture Object

Trilinear Interpolation in Hardware

One large texture block in memory

37

Resampling via 3D Textures

Sampling rate is constant

d d

Supersampling by increasing the

number of slices

38

Cube-Slice Intersection

Question: Can we compute this in a vertex program?

Vertex program:Vertex program:
Input: 6 Vertices

Output: 6 Vertices

P0: Intersection with red path

P2: Intersection with green path

P4: Intersection with blue path

P1: Intersection with dotted red edge or P0

P3: Intersection with dotted green edge or P1

P5: Intersection with dotted blue edge or P2

39

Bricking

What happens if data set is too

large to fit into local video memory?

Divide the data set into

smaller chunks (bricks)

One plane of voxels must be duplicated to
enable correct interpolation across brick boundariesenable correct interpolation across brick boundaries

incorrect interpolation!

40

Bricking

What happens if data set is too

large to fit into local video memory?

Divide the data set into

smaller chunks (bricks)

Problem: Bus-Bandwidth

GPU
Bus

Unbalanced Load for GPU und Memory Bus

transfer brick Transfer brick

drawdraw

TimeInefficient!

41

Bricking

What happens if data set is too

large to fit into local video memory?

Divide the data set into

smaller chunks (bricks)

Problem: Bus-Bandwidth

Keep the bricks small enough!

More than one brick must fit into video memory !

Transfer and Rendering can be performed in parallel

Increased CPU load for intersection calculation!

Effective load balancing still very difficult!

42

Videos

� Human head, rendered with 3D texture:
http://www.youtube.com/watch?v=94_Zs_6AmQw&featu
re=related

� GigaVoxels:
http://www.youtube.com/watch?v=HScYuRhgEJw&feature
=related=related

43

Free Volume Rendering Software

� Virvo:
http://www.calit2.net/~jschulze/projects/vox/

44

Next Lecture

� Final exam review

45

