Winter 2013

CSE 190: 3D User Interaction

Lecture #3: Input Devices Jürgen P. Schulze, Ph.D.

Announcements

- TA: Sidarth Vijay, available immediately
- Office/lab hours: tbd, check web site
- Homework project 1 due Friday

Calit2 Free Monthly Tour

- No date for next tour posted yet
- o Check at:
 - http://www.calit2.net/events/popup.php?i d=2026

REU Paid Research Opportunity

- REU Opening for undergraduate students
- Topic: ArchaeoSTOR map: publishing archaeological geodata on the web
- Paper: COM.Geo '12 Proceedings of the 3rd International Conference on Computing for Geospatial Research and Applications
 - http://dl.acm.org/citation.cfm?id=2345355
- Contact: Aaron Gidding, agidding@ucsd.edu

Paper Presentation

- Paper Stats
 - Title
 - Authors
 - Institute
 - Conference/Journal
 - Year
- Outline
- Related Work
- Methodology
- Results
- Conclusions
- o Q&A

Paper Presentation

HOW YOU PLANNED IT:

Paper Presentation

Displays

Surround Screen VE

- Has 3 to 6 large screens
- Puts user in a room for visual immersion
- Usually driven by a single or group of powerful graphics engines

The StarCAVE

- 18 Dell XPS 710 PCs
- Dual Nvidia GeForce 285 graphics cards
- CentOS Linux
- 34 JVC HD2k projectors (1920x1080 pixels):
 - ~34 megapixels per eye
- 360 degrees immersion
- Passive stereo, circular polarization
- 15 screens on 5 walls, ~8 x 4 foot each, plus floor projection
- 4-camera optical tracking system

NexCAVE

- 14 42" JVC Xpol displays:
 LCD panels with polarizing filters,
 1920x1080 pixels
- 8 rendering PCs
- Nvidia GeForce 480 GPUs
- 2-camera ART TrackPack optical tracking system

SSVE – Advantages

- Provides high resolution and large FOV
- User only needs a pair of light weight glasses for stereo viewing
- User has freedom to move about the device
- Real and virtual objects can be mixed in the environment
- A group of people can inhabit the space simultaneously

SSVE – Disadvantages

- Very expensive (often ~\$1 Million)
- Requires a large amount of physical space
- Projector calibration must be maintained
- Normally only one user head tracked
- Stereo viewing can be problematic (ghosting, focal plane far away)
- Physical objects can get in the way of graphical objects

SSVE - Interface Design

- Do not need to represent physical objects (i.e. hands) as graphical objects
- Can take advantage of the user's peripheral vision
- Do not want the user to get too close to the screens
- Developer can take advantage of the space for using physical props (i.e. car, motion platform)

Workbenches and Variants (1)

- Similar to SSVE but one display (two at most)
- Can be a desk or a large single display (i.e. PowerWall)
- Traditionally a table top metaphor

Workbenches and Variants (2)

Workbenches and Variants (3)

zSpace

- Full HD resolution
- Active stereo screen
- Passive glasses
- Tracked glasses and stylus
- Stylus with infrared markers and gyroscope

Workbenches – Advantages

- High resolution
- For certain applications, makes for an intuitive display
- Can be shared by several users

Workbenches – Disadvantages

- Limited movement
- Typically only one user head-tracked
- No surrounding screens
- Physical objects can get in the way of graphical objects
- Stereo can be problematic

Workbenches – Interface Design

- Ergonomics are important especially when designing interfaces for table displays
- User can take advantage of direct penbased input if display surface permits
- No need to make graphical representations of physical objects

Head Mounted Displays

- Device has either two CRT or LCD screens plus special optics in front of the users eyes
- User cannot naturally see the real world
- Provides a stereoscopic view that moves relative to the user

HMDs – Advantages

- Provides an immersive experience by blocking out the real world
- Fairly easy to set up
- Does not restrict user from moving around in the real world
- Average quality HMD is relatively inexpensive
- Can achieve good stereo quality

HMDs – Disadvantages

- Average quality HMDs have poor resolution and field of view (FOV)
- Does not take advantage of peripheral vision
- Isolation and fear of real world events
- Good quality devices cost in the \$100,000 range
- Heavy and do not fit well

HMDs - Interface Design

- Physical objects require a graphical representation
- Limits the types of input devices that can be used

Oculus Rift

- Recent Kickstarter project
- >90 degrees horizontal field of view
- 110 degrees diagonal field of view
- More than 2x field of view of competition
- o 640 x 800 pixels per eye
- 7" display
- 1000 Hz head tracking

Virtual Retinal Displays (VRD)

- Scan images directly onto the retina
- Invented at the HIT Lab in 1991
- Used for both virtual and augmented reality
- Commercially being developed at Microvision, Inc.

VRDs – Advantages

- Lightweight relative to the user
- Ability for high resolution and FOV
- Potential for complete visual immersion
- Can achieve good stereo quality

VRDs – Disadvantages

- Currently has low resolution and FOV is small
- Displays are currently monochrome

VRDs – Interface Design

- Avenue of research
- Questions arise about eye movement

Auto-Stereoscopic Displays

- Lenticular
- Volumetric
- Holographic

Simulated Autostereo – pCubee

University of British Columbia http://hct.ece.ubc.ca/research/pcubee/

Other Display Technologies

SidebySide/Motion Beam Disney Research, Pittsburgh

Which Visual Display to Use?

- Consider lists of pros and cons
- Consider depth cues supported
- Consider level of visual immersion
- But this is a very hard question to answer empirically

Input Devices

3D Spatial Input Hardware – The Past

Polhemus Patriot

Intersense IS-900

3rd Tech Hi Ball

These Devices cost thousands of Dollars!

3D Spatial Input Hardware –

Today

PlayStation Move

Nintendo Wiimote

Microsoft Kinect

Leap Motion

Razer Hydra

These Devices cost hundreds of Dollars!!

Outline

- Discuss video game motion controller hardware characteristics
 - Nintendo Wiimote
 - Microsoft Kinect
 - PlayStation Move
- Quick start guide for programming
- Case Studies

The Wiimote Device

- Wiimote features
 - uses Bluetooth for communication
 - senses acceleration along 3 axes
 - optical sensor for pointing (uses sensor bar)
 - provides audio and rumble feedback
 - standard buttons and trigger
 - uses 2 AA batteries
- Supports two handed interaction
 - o can use 2 Wiimotes simultaneously
- Easily expandable

The Wiimote – Coordinates

The Wiimote – Optical Data

- Data from optical sensor
 - o uses sensor bar
 - 10 LED lights (5 of each side)
 - accurate up to 5 meters
 - o triangulation to determine depth
 - distance between two points on image sensor (variable)
 distance between LEDs on sensor bar (fixed)
 - roll (with respect to ground) angle can be calculated from angle of two image sensor points
- Advantages
 - provides a pointing tool
 - o gives approximate depth
- Disadvantages
 - line of sight, infrared light problems
 - only constrained rotation understanding

Sensor Bar

The Wiimote – Motion Data

- Data from 3-axis accelerometer
 - o senses instantaneous acceleration on device (i.e., force) along each
 - o arbitrary units (+/- 3g)

 - always sensing gravity
 at rest acceleration is g (upward)
 freefall acceleration is 0

 - finding position and orientation
 at rest roll and pitch can be calculated expension
 in motion math gets more complex
 error accumulation causes problems
 often not needed gestures sufficient
- Advantages
 - easily detect course motions
 mimic many natural actions
- Disadvantages
 - ambiguity issues
 - player cheating
 - o not precise (not a 6 DOF tracker)

The Wii Motion Plus

- Current Wiimote device
 - o gives user a lot of useful data
 - not perfect
 - ambiguities
 - poor range
 - constrained input
 - Wii Motion Plus
 - moving toward better device
 - o finer control
 - o uses dual axis angular rate gyroscope
 - o true linear motion and orientation

Microsoft Kinect

- Kinect features
 - RGB camera
 - depth sensors
 - multi-array mic
 - motorized tilt
 - connects via USB
- Supports controllerless interface
- Full body tracking

Kinect – Hardware Details

- RGB Camera
 - 640 x 480 resolution at 30Hz
- Depth Sensor
 - complimentary metal-oxide semiconductor (CMOS) sensor (30 Hz)
 - infrared laser projector
 - 850mm to 4000mm distance range
 - Windows version has shorter range
- Multi-array mic
 - set of four microphones
 - multi-channel echo cancellation
 - sound position tracing
- Motorized tilt
 - 27° up or down

www.hardwaresphere.com

Kinect - Extracting 3D Depth

- Infrared laser projector emits known dot pattern
- CMOS sensor reads depth of all pixels
 - 2D array of active pixel sensors
 - photo detector
 - active amplifier
- Finds location of dots
- Computes depth information using stereo triangulation
 - normally needs two cameras
 - laser projector acts as second camera
- Depth image generation

Kinect - Skeleton Tracking

- Combines depth information with human body kinematics
 - 20 joint positions
- Object recognition approach
 - per pixel classification
 - decision forests (GPU)
 - millions of training samples

PlayStation Move

- Consists of
 - Playstation Eye
 - 1 to 4 Motion controllers
- Features
 - combines camera tracking with motion sensing
 - 6 DOF tracking (position and orientation)
 - several buttons on front of device
 - analog T button on back of device
 - vibration feedback
 - wireless

PlayStation Move – Hardware

- PlayStation Eye
 - 640 x 480 (60Hz)
 - 320 x 240 (120Hz)
 - microphone array
- Move Controller
 - 3 axis accelerometer
 - 3 axis angular rate gyro
 - magnetometer (helps to calibrate and correct for drift)
 - 44mm diameter sphere with RGB LED
 - used for position recovery
 - invariant to rotation
 - own light source
 - color ensures visual uniqueness

www.hardwaresphere.com

PlayStation Move – 6 DOF Tracking

- Image Analysis
 - find sphere in image
 - segmentation
 - label every pixel being tracked
 - saturated colors more robust
 - pose recovery
 - convert 2D image to 3D pose
 - robust for certain shapes (e.g., sphere)
 - fit model to sphere projection
 - size and location used as starting point
 - 2D perspective projection of sphere is ellipse
 - given focal length and size of sphere, 3D position possible directly from 2D ellipse parameters

PlayStation Move – 6 DOF Tracking

- Sensor Fusion
 - combines results from image analysis with inertial sensors (Unscented Kalman Filter)
 - contributions
 - camera absolute 3D position
 - accelerometer
 - pitch and roll angles (when controller is stationary)
 - controller acceleration (when orientation is known)
 - reduce noise in 3D position and determine linear velocity
 - gyroscope
 - angular velocity to 3D rotation
 - angular acceleration

Kinect Programming

- Two main approaches

Kinect - Microsoft SDK

- Uses subset of technology from Xbox 360 developer version
- Access to microphone array
- Sound source localization (beam forming)
 - connection with Microsoft Speech SDK
- Kinect depth data
- Raw audio and video data
- Access to tilt motor
- Skeleton tracking for up to two people
- Examples and documentation

Kinect SDK – Joints

- Two users can be tracked at once
- <x,y,z> joints in meters
- Each joint has a state
 - tracked, not tracked, inferred
- Inferred occluded, clipped, or no confidence
- Not tracked rare but needed for robustness

Conclusions – Which to Choose?

- Wiimote
- Positives
 - $-\cos t \sim 40
 - buttons
 - something to hold in hanc
- Negatives
 - not true 6 DOF
 - challenging to program
 - reasonable accuracy
 - no company support

Conclusions – Which to Choose?

- Microsoft Kinect
- Positives
 - cost ~ \$130
 - full body tracking
 - joint position
 - joint orientation (not yet)
 - multimodal input
 - good SDK and support
- Negatives
 - no buttons (temporal segmentation problem)
 - more data to process
 - not really designed with physical props in mind
 - latency issues (gesture recognition)

Conclusions – Which to Choose?

- PlayStation Move
- Positives
 - accurate and fast 6 DOF tracking
 - buttons
 - multimodal input
 - good SDK and support
- Negatives
 - cost ~ \$400 to \$500
 - requires PS3 (positive as well)
 - does not track full body (more restrictive)

