
CSE 167:

Introduction to Computer Graphics

Lecture #18: Deferred Rendering

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Spring Quarter 2015

Announcements

2

Lecture Overview

� Particle Systems

� Collision Detection

� Deferred Rendering

3

Particle Systems

� Used for:

� Fire/sparks

� Rain/snow

� Water spray

� Explosions

� Galaxies

4

Internal Representation
� Particle system is collection of a number of individual elements (particles)

� Controls a set of particles which act autonomously but share some
common attributes

� Particle Emitter: Source of all new particles

� 3D point

� Polygon mesh: particles’ initial velocity vector is normal to surface

� Particle attributes:

� position (3D)

� velocity (vector: speed and direction)

� color + opacity

� lifetime

� size

� shape

� weight

5

Dynamic Updates

� Particles change position and/or attributes with time

� Initial particle attributes often created with random numbers

� Frame update:

� Parameters: simulation of particles, can include collisions with geometry

� Forces (gravity, wind, etc) accelerate a particle

� Acceleration changes velocity

� Velocity changes position

� Rendering: display as

� OpenGL points

� (Textured) billboarded quads

� Point sprites

6

Source: http://www.particlesystems.org/

Point Sprite

� Screen-aligned element of variable size

� Defined by single point

� Sample code:

glTexEnvf(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);

glEnable(GL_POINT_SPRITE);

glBegin(GL_POINTS);

glVertex3f(position.x, position.y, position.z);

glEnd();

glDisable(GL_POINT_SPRITE);

7

Demo

� Demo software by Prof. David McAllister:

� http://www.calit2.net/~jschulze/tmp/Particle221Demos.zip

8

References

� Tutorial with source code by Bartlomiej Filipek, 2014:

� http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-
Renderer

� Articles with source code:

� Jeff Lander: “The Ocean Spray in Your Face”, Game Developer, July 1998

� http://www.darwin3d.com/gamedev/articles/col0798.pdf

� John Van Der Burg: “Building an Advanced Particle System”, Gamasutra,
June 2000

� http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php

� Founding scientific paper:

� Reeves: “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”,
ACM Transactions on Graphics (TOG) Volume 2 Issue 2, April 1983

� http://zach.in.tu-clausthal.de/teaching/vr_literatur/Reeves%20-%20Particle%20Systems.pdf

9

Lecture Overview

� Particle Systems

� Collision Detection

� Deferred Rendering

10

Collision Detection

� Goals:

� Physically correct simulation
of collision of objects

� Not covered here

� Determine if two objects
intersect

� Slow calculation because of
exponential growth O(n2):

� # collision tests = n*(n-1)/2

11

Intersection Testing

� Purpose:

� Keep moving objects on the ground

� Keep moving objects from going through walls, each other, etc.

� Goal:

� Believable system, does not have to be physically correct

� Priority:

� Computationally inexpensive

� Typical approach:

� Spatial partitioning

� Object simplified for collision detection by one or a few

� Points

� Spheres

� Axis aligned bounding box (AABB)

� Pairwise checks between points/spheres/AABBs and static geometry

12

Sweep and Prune Algorithm

� Sorts bounding boxes

� Not intuitively obvious how to sort bounding boxes in 3-space

� Dimension reduction approach:

� Project each 3-dimensional bounding box onto the x,y and z axes

� Find overlaps in 1D: a pair of bounding boxes can overlap if and only if
their intervals overlap in all three dimensions

� Construct 3 lists, one for each dimension

� Each list contains start/end point of intervals corresponding to that dimension

� By sorting these lists, we can determine which intervals overlap

� Reduce sorting time by keeping sorted lists from previous frame, changing
only the interval endpoints

� Alternative: project bounding boxes onto coordinate axis
planes and look for overlaps in 2D

13

Collision Map (CM)

� 2D map with information
about where objects can go
and what happens when they
go there

� Colors indicate different
types of locations

� Map can be computed from
3D model, or hand drawn
with paint program

� Granularity: defines how
much area (in object space)
one CM pixel represents

14

References

� I-Collide:

� Interactive and exact collision detection library for large
environments composed of convex polyhedra

� http://gamma.cs.unc.edu/I-COLLIDE/

� OZ Collide:

� Fast, complete and free collision detection library in C++

� Based on AABB tree

� http://www.tsarevitch.org/ozcollide/

15

Lecture Overview

� Deferred Rendering Techniques

� Deferred Shading

� Screen Space Ambient Occlusion

� Bloom

� Glow

16

Deferred Rendering

� Opposite to Forward Rendering, which is the way we
have rendered with OpenGL so far

� Deferred rendering describes post-processing algorithms

� Requires two-pass rendering

� First pass:

� Scene is rendered as usual by projecting 3D primitives to 2D screen
space.

� Additionally, an off-screen buffer (G-buffer) is populated with
additional information about the geometry elements at every pixel

� Examples: normals, diffuse shading color, position, texture coordinates

� Second pass:

� An algorithm, typically implemented as a shader, processes the G-
buffer to generate the final image in the back buffer

17

Lecture Overview

� Deferred Rendering Techniques

� Deferred Shading

� Screen Space Ambient Occlusion

� Bloom

� Glow

� The Future of Computer Graphics

18

Deferred Shading

� Postpones shading calculations for a fragment until its
visibility is completely determined

� Only fragments that really contribute to the image are
shaded

� Algorithm:

� Fill a set of buffers with common data, such as diffuse
texture, normals, material properties

� For the lighting just render the light extents and fetch data
from these buffers for the lighting computation

� Advantages:

� Decouples lighting from geometry

� Several lights can be applied with a single draw call:
more than 1000 light sources can be rendered at 60 fps

� Disadvantages:

� Consumes more memory, bandwidth and shader
instructions than traditional rendering

19

Particle system with
glowing particles.

Source: Humus 3D

Reference

� Deferred Shading Tutorial:

� http://gamedevs.org/uploads/deferred-shading-tutorial.pdf

20

Lecture Overview

� Deferred Rendering Techniques

� Deferred Shading

� Screen Space Ambient Occlusion

� Bloom

� Glow

� The Future of Computer Graphics

21

Screen Space Ambient Occlusion

� Screen Space Ambient Occlusion is abbreviated as SSAO

� “Screen Space” refers to this being a deferred rendering approach

� Rendering technique for approximating ambient occlusion in real time

� Developed by Vladimir Kajalin while working at Crytek

� First use in 2007 PC game Crysis

22 SSAO component

Ambient Occlusion

� Attempts to approximate global illumination

� Very crude approximation

� Unlike local methods like Phong shading, ambient
occlusion is a global method

� Illumination at each point is a function of other geometry in
the scene

� Appearance achieved by ambient occlusion is similar to
the way an object appears on an overcast day

� Example: arm pit is hit by a lot less light than top of head

� In the industry, ambient occlusion is often referred to as
"sky light"

23

SSAO Demo

� Screen Space Ambient Occlusion (SSAO) in Crysis

� http://www.youtube.com/watch?v=ifdAILHTcZk

24

Basic SSAO Algorithm

� First pass:

� Render scene normally and write z values to g-buffer’s alpha channel

� Second pass:

� Pixel shader samples depth values around the processed fragment and
computes amount of occlusion, stores result in red channel

� Occlusion depends on depth difference between sampled fragment
and currently processed fragment

25

Ambient occlusion values in red color channel
Source: www.gamerendering.com

SSAO With Normals

� First pass:

� Render scene normally and copy z values to g-buffer’s alpha
channel and scene normals to g-buffer’s RGB channels

� Second pass:

� Use normals and z-values to compute occlusion between
current pixel and several samples around that pixel

26

With SSAONo SSAO

SSAO Discussion

� Advantages:

� Deferred rendering algorithm: independent of scene complexity

� No pre-processing, no memory allocation in RAM

� Works with dynamic scenes

� Works in the same way for every pixel

� No CPU usage: executed completely on GPU

� Disadvantages:

� Local and view-dependent (dependent on adjacent texel depths)

� Hard to correctly smooth/blur out noise without interfering with depth
discontinuities, such as object edges, which should not be smoothed out

27

References

� Nvidia’s documentation:

� http://developer.download.nvidia.com/SDK/10.5/direct3d/Sourc
e/ScreenSpaceAO/doc/ScreenSpaceAO.pdf

� SSAO shader code from Crysis:

� http://69.163.227.177/forum.php?mod=viewthread&tid=772

� Another implementation:

� http://www.gamerendering.com/2009/01/14/ssao/

28

Lecture Overview

� Deferred Rendering Techniques

� Deferred Shading

� Screen Space Ambient Occlusion

� Bloom

� Glow

� The Future of Computer Graphics

29

Bloom Effect

� Bloom gives a scene a look of bright lighting and
overexposure

30

Left: no bloom, right: bloom.
Source: http://jmonkeyengine.org

Bloom Shader

� Post-processing filter: applied after scene is
rendered normally

� Step 1: Extract all highlights of the rendered
scene, superimpose them and make them
more intense

� Operates on back buffer

� Often done with off-screen buffer smaller
than frame buffer

� Highlights found by thresholding luminance

� Step 2: Blur off-screen buffer, e.g., with
Gaussian blurring

� Step 3: Composite off-screen buffer with
back buffer

31

Bloom shader render steps.
Source: http://www.klopfenstein.net

References

� Bloom Shader

� http://www.klopfenstein.net/lorenz.aspx/gamecomponents
-the-bloom-post-processing-filter

� GLSL Shader for Gaussian Blur

� http://www.ozone3d.net/tutorials/image_filtering_p2.php

32

Lecture Overview

� Deferred Rendering Techniques

� Deferred Shading

� Screen Space Ambient Occlusion

� Bloom

� Glow

� The Future of Computer Graphics

33

Glow Effects

� Glows and halos of light appear
everywhere in the world

� They provide powerful visual cues
about brightness and atmosphere

� In computer graphics, the intensity
of light reaching the eye is limited, so
the only way to distinguish intense
sources of light is by their
surrounding glow and halos

� In everyday life, glows and halos are
caused by light scattering in the
atmosphere or within our eyes

34

A cityscape with and without glow.

Source: GPU Gems

Glow vs. Bloom

� Bloom filter looks for highlights automatically, based on a
threshold value

� If you want to have more control over what glows and
does not glow, a glow filter is needed

� Glow filter modifies the thresholding steop of the Bloom
filter: only the glowing objects are rendered

� Render passes:

� Render entire scene to the back buffer

� Render only glowing objects to a smaller off-screen glow buffer

� Apply a bloom pixel shader to glow buffer

� Compose back buffer and glow buffer together

35

References

� GPU Gems Chapter on Glow

� http://http.developer.nvidia.com/GPUGems/gpugems_ch21
.html

� Bloom and Glow

� http://jmonkeyengine.org/wiki/doku.php/jme3:advanced:bloom_
and_glow

36

The Future of Computer Graphics

� ACM SIGGRAPH Asia, Dec 3-6, 2014 in Shenzen/China (2:58)

� https://www.youtube.com/watch?v=s8lzXMWMngU

� Cryengine 4 Trailer, 2013 (3:02)

� https://www.youtube.com/watch?v=aseq4T81P7g

� The Centrifuge Brain Project, 2013 (6:35)

� https://www.youtube.com/watch?v=RVeHxUVkW4w

37

Good luck with your final projects!

38

