CSE190 3DUI

- Winter 2013

CSE 190: 3D User Interaction

Lecture \#7: Selection Jürgen P. Schulze, Ph.D.

Announcements

- Homework assignment \#2 due Friday, February $8^{\text {th }}$ at 1 pm in Sequoia lab 142
- This time grading starts at 12 noon
- Reminder: recommended reading

Augmented Reality Demo

- Web app:
http://www.nature.com/naturejobs/science/p rofiles/kaust-ar

Razer Hydra

- Developed by Sixense Entertainment
- Released June 16, 2011
- Tracks absolute position and orientation (6 DOF)
- Precision: 1 mm and 1 degree
- Uses a weak electro-magnetic field
- Two wired input devices

Razer Hydra Video

- Razer Hydra for low-cost 3D displays
- By Oliver Kreylos, UCD
- http://www.youtube.com/watch?v=H5bSz VByLjM

Leap Motion

- Short range finger tracking
- To date no access to depth map
- Inexpensive (\$70 on pre-order)
- Not yet available (promised for early 2014)
- SDK available today
- Developer units being shipped
- More and more demo videos available

Leap Video

- https://www.leapmotion.com/

Why Selection and Manipulation?

- Major method of interaction with physical environments
- Major method of interaction with virtual environments
- Affects the quality of entire 3D interface
- Design of 3D manipulation techniques is difficult

Selection \& Manipulation

- Selection: specifying one or more objects from a set
- Manipulation: modifying object properties (position, orientation, scale, shape, color, texture, behavior, etc.)

Goals of Selection

- Indicate action on object
- Query object
- Make object active
- Travel to object location
- Set up manipulation

Selection Performance

- Variables affecting user performance
- Object distance from user
- Object size
- Density of objects in area
- Presence of occluding objects

Canonical Parameters

- Selection
- distance and direction to target
- target size
- density of objects around the target
- number of targets to be selected
- target occlusion
- Positioning
- distance/direction to initial position
- distance/direction to target position
- translation distance
- required precision of positioning
- Rotation
- distance to target
- initial orientation
- final orientation
- amount of rotation

Input Device Parameters

- Number of control dimensions
- Control integration: how many DOF are controlled simultaneously
- Force vs. position control
- Form factor: impact on accuracy

Sensor attached to hand

Sensor rolled with fingers

Technique Classification by Metaphor

- Manipulation techniques
- Egocentric metaphor
- Virtual pointer metaphor
- Ray-casting
- Two-handed pointing
- Flashlight
- Image plane
- Direct manipulation
- "Classical" virtual hand
- Go-Go
- Hybrid techniques
- HOMER
- Exocentric metaphor
- World-in-miniature
- Scaled-world grab
- Hybrid techniques
- Voodoo Dolls

Isomorphic vs. Non-Isomorphic View

- Isomorphic
- Geometrical on-to-one correspondence between hand motions in physical and virtual worlds
- Natural interactions
- Non-Isomorphic
- "Magic" virtual tools (laser beams, rubber arms, etc.)

3D Selection and Manipulation Techniques

- Pointing
- ray-casting
- two-handed pointing
- flashlight \& aperture
- image plane
- Direct manipulation
- simple virtual hand
- Go-Go
- WIM
- Hybrids
- Homer
- Scaled-World Grab
- Voodoo Dolls

Ray-Casting

- User points at objects with virtual ray
- Ray defines and visualizes pointing direction
- First intersected object is selected
$\mathbf{p}(\alpha)=\mathbf{h}+\alpha \cdot \overrightarrow{\mathbf{p}}$
where $0<\alpha<\infty$, determined by first object intersection
$\mathbf{h}=3 \mathrm{D}$ position of virtual hand
$\overrightarrow{\mathbf{p}}=$ ray attached to \mathbf{h}

Two-Handed Pointing

- Ray casting with 2 hands
- More control
- Distance between hands controls length
- Allows pointing at things
 behind other things

$$
\begin{aligned}
& \mathbf{p}(\alpha)=\mathbf{h}_{\mathbf{1}}+\alpha \cdot\left(\mathbf{h}_{\mathbf{r}}-\mathbf{h}_{\mathbf{1}}\right) \\
& \text { where } 0<\alpha<\infty \text {, fixed parameter }
\end{aligned}
$$

$$
\mathbf{h}_{1}=3 \mathrm{D} \text { position of left hand }
$$

$$
\mathbf{h}_{\mathrm{r}}=3 \mathrm{D} \text { position of right hand }
$$

Flashlight

- Soft selection technique
- Does not need precision
- Conic selection volume
- Tip of cone in wand
- Cone direction determined by wand direction

- Fixed cone size
- If multiple objects in cone
- Object closer to center line of cone is selected
- If multiple objects are equally close to center line: select objec \dagger closer to device

Image Plane Techniques

- Require only 2 DOF
- Selection based on 2D projections
- Use virtual image plane in front of user
- Dependent on head/eye position

Sticky Finger

Virtual Hand

oSelect and manipulate directly with hand

- Hand represented as 3D cursor

- Intersection between cursor and object indicates selection

$$
\mathbf{p}_{\mathrm{v}}=\alpha \cdot \mathbf{p}_{\mathrm{r}}, \mathbf{R}_{\mathrm{v}}=\mathbf{R}_{\mathrm{r}}
$$

$\mathbf{p}_{\mathrm{r}}, \mathbf{R}_{\mathrm{r}}=$ position and orientation of real hand
$\mathbf{p}_{\mathrm{v}}, \mathbf{R}_{\mathrm{v}}=$ position and orientation of hand in VE
$\alpha=$ fixed scaling factor

Go-Go

- By Poupyrev, 1996
- Arm-extension technique
- Touch objects to select, like simple virtual hand
- Non-linear mapping between physical and virtual hand position
- Requires torso position
- Local and distant regions
$r_{v}=F\left(r_{\mathrm{r}}\right)=\left\{\begin{array}{cc}r_{\mathrm{r}} & \text { if } r_{\mathrm{r}} \leq D \\ r_{\mathrm{r}}+\alpha\left(r_{\mathrm{r}}-D\right)^{2} & \text { otherwise }\end{array}\right.$
where $r_{r}=$ length of $\overrightarrow{\mathbf{R}}_{\mathbf{r}}$
$r_{v}=$ length of $\overrightarrow{\mathbf{R}}_{\mathbf{v}}$
D, α are constants

World-in-Miniature (WIM)

o By Stoakley, 1995
o"Dollhouse" world held in user's hand
o Miniature objects can be manipulated directly

- Moving miniature objects affects full-scale objects
- Can also be used for navigation

HOMER

Hand-Centered
Objec \dagger
Manipulation

Time
Extending
Ray-Casting

- By Bowman/Hodges, 1997

- Select: ray-casting
- Manipulate: hand-centered

Scaled-World Grab

- By Mine et al., 1997
- Often used with occlusion
- At selection, scale world down so that virtual hand touches selected object
- User initially does not notice a change in the
 image

Voodoo Dolls

- Pierce et al. 1999
- Two-handed technique
- Builds upon image plane and WIM techniques
- Developed for pinch gloves
- Creates copies of objects (dolls) for manipulation

- Non-dominant hand: stationary frame of reference
- Dominant hand: defines position and orientation

Rotational Mappings

- Most listed techniques deal only with selection and translation
- Many do not work well for rotations
- Rotation options:
- Direct mapping of object rotation to rotation of device
- Can cause clutching: repeated grabbing and releasing of object to rotate further than wrist allows
- Tracking jitter can make small rotations difficult
- Rotation amplification or slow-down

Rotation Calculations

- Simplest way to calculate rotations: Euler angles
- Euler angles define rotation by 3 rotations about coordinate axes
- Typical problem with Euler angles: Gimbal Lock, occurs in certain object orientations
- Video (play until 1:12)
- http://www.youtube.com/watch? $\mathrm{v}=\mathrm{zc} 8 \mathrm{~b} 2 \mathrm{Jo7mno}$
- Better than Euler angles: 4×4 rotation matrices
- Problem: 16 numbers required to specify rotation
- Quaternions: greatly improve rotation calculations

Quaternions

- OSG defines mathematical operators for quaternions to add, subtract, multiply, etc.
- In OSG, quaternions can be specified by rotation angle and axis:

```
o osg::Quat(value_type angle, const Vec3d
    &axis)
```

- Or mathematically:
o osg::Quat(value_type $x, ~ v a l u e _t y p e ~ y$, value_type $\left.z, ~ v a l u e _t y p e ~ w\right) ~$

Quaternion Definition

- $[w, x, y, z]$
- $w=\cos (a / 2)$
- $x=\sin (a / 2) * n x$
- $y=\sin (a / 2)$ * ny
o $z=\sin (a / 2)$ * $n z$
- a: angle of rotation
- \{nx,ny,nz\}: normalized axis of rotation

Useful Quaternions

W	x	y	z	Description
1	0	0	0	Identity quaternion, no rotation
0	1	0	0	180° turn around X axis
0	0	1	0	180° turn around Y axis
0	0	0	1	180° turn around Z axis
sqrt(0.5)	sqrt(0.5)	0	0	90° rotation around X axis
sqrt(0.5)	0	sqrt(0.5)	0	90° rotation around Y axis
sqrt(0.5)	0	0	sqrt(0.5)	90° rotation around Z axis
sqrt(0.5)	-sqrt(0.5)	0	0	-90° rotation around X axis
sqrt(0.5)	0	-sqrt(0.5)	0	-90° rotation around Y axis
sqrt(0.5)	0	0	-sart(0.5)	-90 ${ }^{\circ}$ rotation around Z axis

Quaternions: Further Reading

- Quaternions in Ogre3D:
- http://www.ogre3d.org/tikiwiki/Quaternion+ and+Rotation+Primer
- Quaternions in OSG:
- http://www.openscenegraph.org/projects/ osg/wiki/Support/Maths/QuaternionMaths

