CSE190 3DUI - Winter 2013

CSE 190: 3D User Interaction

Lecture #7: Selection Jürgen P. Schulze, Ph.D.

Announcements

- Homework assignment #2 due
 Friday, February 8th at 1pm in Sequoia lab
 142
 - This time grading starts at 12 noon
- Reminder: recommended reading

Augmented Reality Demo

 Web app: http://www.nature.com/naturejobs/science/p rofiles/kaust-ar

Razer Hydra

- Developed by Sixense Entertainment
- o Released June 16, 2011
- Tracks absolute position and orientation (6 DOF)
 - Precision: 1mm and 1 degree
- Uses a weak electro-magnetic field
- Two wired input devices

Razer Hydra Video

- Razer Hydra for low-cost 3D displays
 - By Oliver Kreylos, UCD
 - http://www.youtube.com/watch?v=H5bSz VByLjM

Leap Motion

- Short range finger tracking
 - To date no access to depth map
- Inexpensive (\$70 on pre-order)
- Not yet available (promised for early 2014)
- SDK available today
- Developer units being shipped
- More and more demo videos available

Leap Video

• https://www.leapmotion.com/

Why Selection and Manipulation?

- Major method of interaction with physical environments
- Major method of interaction with virtual environments
- Affects the quality of entire
 3D interface
- Design of 3D manipulation techniques is difficult

Selection & Manipulation

- Selection: specifying one or more objects from a set
- Manipulation: modifying object properties (<u>position</u>, <u>orientation</u>, scale, shape, color, texture, behavior, etc.)

Goals of Selection

- Indicate action on object
- Query object
- Make object active
- Travel to object location
- Set up manipulation

Selection Performance

- Variables affecting user performance
 - Object distance from user
 - Object size
 - Density of objects in area
 - Presence of occluding objects

Canonical Parameters

- Selection
 - distance and direction to target
 - target size
 - density of objects around the target
 - number of targets to be selected
 - target occlusion
- Positioning
 - distance/direction to initial position
 - distance/direction to target position
 - translation distance
 - required precision of positioning
- Rotation
 - distance to target
 - initial orientation
 - final orientation
 - amount of rotation

Input Device Parameters

- Number of control dimensions
- Control integration: how many DOF are controlled simultaneously
- Force vs. position control
- Form factor: impact on accuracy

Sensor attached to hand

Sensor rolled with fingers

Technique Classification by Metaphor

- Manipulation techniques
 - Egocentric metaphor
 - Virtual pointer metaphor
 - Ray-casting
 - Two-handed pointing
 - Flashlight
 - Image plane
 - Direct manipulation
 - "Classical" virtual hand
 - Go-Go
 - Hybrid techniques
 - HOMER
 - Exocentric metaphor
 - World-in-miniature
 - Scaled-world grab
 - Hybrid techniques
 - Voodoo Dolls

Isomorphic vs. Non-Isomorphic View

- Isomorphic
 - Geometrical on-to-one correspondence between hand motions in physical and virtual worlds
 - Natural interactions
- Non-Isomorphic
 - "Magic" virtual tools (laser beams, rubber arms, etc.)

3D Selection and Manipulation Techniques

- Pointing
 - ray-casting
 - two-handed pointing
 - flashlight & aperture
 - o image plane
- Direct manipulation
 - simple virtual hand
 - o Go-Go
 - WIM
- Hybrids
 - Homer
 - Scaled-World Grab
 - Voodoo Dolls

Ray-Casting

- User points at objects with virtual ray
- Ray defines and visualizes pointing direction
- First intersected object is selected

$$\mathbf{p}(\alpha) = \mathbf{h} + \alpha \cdot \vec{\mathbf{p}}$$

where $0 < \alpha < \infty$, determined by first object intersection

 $\mathbf{h} = 3D$ position of virtual hand

 $\vec{\mathbf{p}}$ = ray attached to \mathbf{h}

Two-Handed Pointing

- Ray casting with 2 hands
- More control
 - Distance between hands controls length
 - Allows pointing at things behind other things

$$\mathbf{p}(\alpha) = \mathbf{h}_{\mathbf{l}} + \alpha \cdot (\mathbf{h}_{\mathbf{r}} - \mathbf{h}_{\mathbf{l}})$$

where $0 < \alpha < \infty$, fixed parameter

 $\mathbf{h}_1 = 3D$ position of left hand

 $\mathbf{h_r} = 3D$ position of right hand

Flashlight

- Soft selection technique
 - Does not need precision
 - Conic selection volume
 - Tip of cone in wand
 - Cone direction determined by wand direction
 - Fixed cone size
 - If multiple objects in cone
 - Object closer to center line of cone is selected
 - If multiple objects are equally close to center line: select object closer to device

Image Plane Techniques

- Require only 2 DOF
 - Selection based on 2D projections
 - Use virtual image plane in front of user
 - Dependent on head/eye position

Virtual Hand

- Select and manipulate directly with hand
- Hand represented as 3D cursor

Intersection between cursor and object indicates
 selection

$$\mathbf{p}_{\mathbf{v}} = \alpha \cdot \mathbf{p}_{\mathbf{r}}, \mathbf{R}_{\mathbf{v}} = \mathbf{R}_{\mathbf{r}}$$

 $\mathbf{p_r}, \mathbf{R_r} = \text{position}$ and orientation of real hand

 $\mathbf{p}_{\mathbf{v}}$, $\mathbf{R}_{\mathbf{v}}$ = position and orientation of hand in VE

 α = fixed scaling factor

Go-Go

- By Poupyrev, 1996
- Arm-extension technique
- Touch objects to select, like simple virtual hand
- Non-linear mapping between physical and virtual hand position
- Requires torso position
- Local and distant regions

$$r_{v} = F(r_{r}) = \begin{cases} r_{r} & if r_{r} \leq D \\ r_{r} + \alpha (r_{r} - D)^{2} & otherwise \end{cases}$$

where $r_r = \text{length of } \vec{\mathbf{R}}_r$

 $r_{v} = \text{length of } \vec{\mathbf{R}}_{v}$

 D, α are constants

World-in-Miniature (WIM)

- By Stoakley, 1995
- "Dollhouse" world held in user's hand
- Miniature objects can be manipulated directly
- Moving miniature objects affects full-scale objects
- Can also be used for navigation

HOMER

Hand-Centered

Object

Manipulation

Extending

Ray-Casting

- By Bowman/Hodges, 1997
- Select: ray-casting
- Manipulate: hand-centered

Scaled-World Grab

- By Mine et al., 1997
- Often used with occlusion
- At selection, scale world down so that virtual hand touches selected object
- User initially does not notice a change in the image

Voodoo Dolls

- o Pierce et al. 1999
- Two-handed technique
- Builds upon image plane and WIM techniques
- Developed for pinch gloves
- Creates copies of objects (dolls) for manipulation
- Non-dominant hand: stationary frame of reference
- Dominant hand: defines position and orientation

Rotational Mappings

- Most listed techniques deal only with selection and translation
- Many do not work well for rotations
- Rotation options:
 - Direct mapping of object rotation to rotation of device
 - Can cause clutching: repeated grabbing and releasing of object to rotate further than wrist allows
 - Tracking jitter can make small rotations difficult
 - Rotation amplification or slow-down

Rotation Calculations

- Simplest way to calculate rotations: Euler angles
- Euler angles define rotation by 3 rotations about coordinate axes
- Typical problem with Euler angles: Gimbal Lock, occurs in certain object orientations
 - Video (play until 1:12)
 - http://www.youtube.com/watch?v=zc8b2Jo7mno
- Better than Euler angles: 4x4 rotation matrices
 - Problem: 16 numbers required to specify rotation
- Quaternions: greatly improve rotation calculations

Quaternions

- OSG defines mathematical operators for quaternions to add, subtract, multiply, etc.
- In OSG, quaternions can be specified by rotation angle and axis:
 - o osg::Quat(value_type angle, const Vec3d &axis)
- Or mathematically:
 - o osg::Quat(value_type x, value_type y, value_type z, value_type w)

Quaternion Definition

- [W, X, Y, Z]
 - \circ w = cos(a/2)
 - \circ x = $\sin(\alpha/2)$ * nx
 - $y = \sin(a/2) * ny$
 - $z = \sin(\alpha/2) * nz$
- o a: angle of rotation
- {nx,ny,nz}: normalized axis of rotation

Useful Quaternions

w	х	У	z	Description
1	0	0	0	Identity quaternion, no rotation
0	1	0	0	180° turn around X axis
0	0	1	0	180° turn around Y axis
0	0	0	1	180° turn around Z axis
sqrt(0.5)	sqrt(0.5)	0	0	90° rotation around X axis
sqrt(0.5)	0	sqrt(0.5)	0	90° rotation around Y axis
sqrt(0.5)	0	0	sqrt(0.5)	90° rotation around Z axis
sqrt(0.5)	-sqrt(0.5)	0	0	-90° rotation around X axis
sqrt(0.5)	0	-sqrt(0.5)	0	-90° rotation around Y axis
sqrt(0.5)	0	0	-sqrt(0.5)	-90° rotation around Z axis

Quaternions: Further Reading

- Quaternions in Ogre3D:
 - http://www.ogre3d.org/tikiwiki/Quaternion+ and+Rotation+Primer
- Quaternions in OSG:
 - http://www.openscenegraph.org/projects/ osg/wiki/Support/Maths/QuaternionMaths