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Announcements
 Sunday, November 8th at 11:59pm:
 Homework Project 2 due

 Next Wednesday isVeterans Day
 No discussion
 Homework project 3 introduction in class on Tuesday
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Lecture Overview
 Scene Graphs & Hierarchies
 Introduction
 Data structures
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Graphics System Architecture
Interactive Applications
 Video games, scientific visualization, CAD modeling
Rendering Engine, Scene Graph API
 Implement functionality commonly required in applications
 Back-ends for different low-level APIs
 No broadly accepted standards
 OpenSceneGraph, Nvidia SceniX, Torque3D
Low-level graphics API
 Interface to graphics hardware
 Highly standardized: OpenGL, Direct3D, Vulkan
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Commonly Offered Functionality
 High-level scene representation
 Graph data structure

 Resource management
 File loaders for geometry, textures, materials, animation 

sequences
 Memory management

 CPU <-> GPU memory
 HDD <-> CPU memory

 Rendering
 Optimized for efficiency (e.g., minimize OpenGL state changes)
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Lecture Overview
 Scene Graphs & Hierarchies
 Introduction
 Data structures
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Scene Graphs
 Data structure for intuitive construction of 3D scenes
 So far, our GLFW-based projects store a linear list of 

objects
 Does not scale to large numbers of objects in complex 

dynamic scenes
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Example: Scene Graph for Solar System
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Data Structure
 Requirements
 Collection of separable geometry models
 Organized in groups
 Related via hierarchical transformations

 Use a tree structure
 Nodes have associated local coordinates
 Different types of nodes
 Geometry
 Transformations
 Lights
 Many more
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Class Hierarchy
 Many designs possible
 Design driven by intended application
 Games

 Optimized for speed
 Large-scale visualization

 Optimized for memory requirements
 Modeling system

 Optimized for editing flexibility
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Sample Class Hierarchy
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Class Hierarchy
Node

 Common base class for all node types
 Stores node name, pointer to parent, bounding box
Geometry

 sets the modelview matrix to the current C matrix 
 has a class method which draws its associated geometry
Transform

 Stores list of children
 Stores 4x4 matrix for affine transformation
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Class Hierarchy
Sphere

 Derived from Geometry node
 Pre-defined geometry with 

parameters, e.g., for tesselation
level (number of triangles), 
solid/wireframe, etc.

Billboard

 Special geometry node to display 
an image always facing the viewer
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Class Hierarchy
3DModel

 Loads a 3D model from a file

Trackball

 Creates the matrix transformation 
based on a virtual trackball 
controlled with the mouse 
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Scene Graph for Solar System
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Building the Solar System
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// create sun:
world = new Transform();
world.addChild(new Model(“Sun.obj”));

// create planets:
earth2world = new Transform(…);  
mars2world = new Transform(…);
earth2world.addChild(new Model(“Earth.obj”));
mars2world.addChild(new Model(“Mars.obj”));
world.addChild(earth2world);
world.addChild(mars2world);

// create moons:
moon2earth = new Transform(…);
phobos2mars = new Transform(…);
deimos2mars = new Transform(…);
moon2earth.addChild(new Model(“Moon.obj”));
phobos2mars.addChild(new Model(“Phobos.obj”));
deimos2mars.addChild(new Model(“Deimos.obj”));
earth2world.addChild(moon2earth);
mars2world.addChild(phobos2mars);
mars2world.addChild(deimos2mars);



Transformation Calculations
 moon2world = moon2earth * earth2world;
 phobos2world = phobos2mars * mars2world;
 deimos2world = deimos2mars * mars2world;
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Scene Rendering

Transform::draw(Matrix4 M) 
{

M_new = M * MT;   // MT is a class member
for all children

draw(M_new);
}

Geometry::draw(Matrix4 M) 
{

setModelMatrix(M);
render(myObject);

}

 Recursive draw calls

Initiate rendering with
world->draw(IDENTITY);
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Scene Graph Example: Bedroom
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Image Source: COMPSCI290/Duke University



Ideas for Scene Graph Nodes
 Change tree structure

 Add, delete, rearrange nodes

 Change node parameters
 Transformation matrices
 Shape of geometry data
 Materials

 Create new node subclasses
 Animation, triggered by timer events
 Dynamic drone-style camera
 Light source

 Provide complex functionality as nodes
 Video node
 Elevator node with buttons to press and sliding door mechanism
 Terrain rendering node
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