
CSE 167:
Introduction to Computer Graphics
Lecture #11: Scene Graph

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2020

Announcements
 Sunday, November 8th at 11:59pm:
 Homework Project 2 due

 Next Wednesday isVeterans Day
 No discussion
 Homework project 3 introduction in class on Tuesday

2

Lecture Overview
 Scene Graphs & Hierarchies
 Introduction
 Data structures

3

Graphics System Architecture
Interactive Applications
 Video games, scientific visualization, CAD modeling
Rendering Engine, Scene Graph API
 Implement functionality commonly required in applications
 Back-ends for different low-level APIs
 No broadly accepted standards
 OpenSceneGraph, Nvidia SceniX, Torque3D
Low-level graphics API
 Interface to graphics hardware
 Highly standardized: OpenGL, Direct3D, Vulkan

4

Commonly Offered Functionality
 High-level scene representation
 Graph data structure

 Resource management
 File loaders for geometry, textures, materials, animation

sequences
 Memory management

 CPU <-> GPU memory
 HDD <-> CPU memory

 Rendering
 Optimized for efficiency (e.g., minimize OpenGL state changes)

5

Lecture Overview
 Scene Graphs & Hierarchies
 Introduction
 Data structures

6

Scene Graphs
 Data structure for intuitive construction of 3D scenes
 So far, our GLFW-based projects store a linear list of

objects
 Does not scale to large numbers of objects in complex

dynamic scenes

7

Example: Scene Graph for Solar System

8

MMars2World

MDeimos2Mars

Sun

Mars

Phobos Deimos

MPhobos2Mars

World

MEarth2World

Earth

Moon

MMoon2Earth

Data Structure
 Requirements
 Collection of separable geometry models
 Organized in groups
 Related via hierarchical transformations

 Use a tree structure
 Nodes have associated local coordinates
 Different types of nodes
 Geometry
 Transformations
 Lights
 Many more

9

Class Hierarchy
 Many designs possible
 Design driven by intended application
 Games

 Optimized for speed
 Large-scale visualization

 Optimized for memory requirements
 Modeling system

 Optimized for editing flexibility

10

Sample Class Hierarchy

11

Node

GeometryTransform

3DModelTrackball Sphere Billboard

Class Hierarchy
Node

 Common base class for all node types
 Stores node name, pointer to parent, bounding box
Geometry

 sets the modelview matrix to the current C matrix
 has a class method which draws its associated geometry
Transform

 Stores list of children
 Stores 4x4 matrix for affine transformation

12

Transform

Geometry

Class Hierarchy
Sphere

 Derived from Geometry node
 Pre-defined geometry with

parameters, e.g., for tesselation
level (number of triangles),
solid/wireframe, etc.

Billboard

 Special geometry node to display
an image always facing the viewer

13

Class Hierarchy
3DModel

 Loads a 3D model from a file

Trackball

 Creates the matrix transformation
based on a virtual trackball
controlled with the mouse

14

Scene Graph for Solar System

15

MMars2World

MDeimos2Mars

Sun

Mars

Phobos Deimos

MPhobos2Mars

World

MEarth2World

Earth

Moon

MMoon2Earth

Building the Solar System

16

// create sun:
world = new Transform();
world.addChild(new Model(“Sun.obj”));

// create planets:
earth2world = new Transform(…);
mars2world = new Transform(…);
earth2world.addChild(new Model(“Earth.obj”));
mars2world.addChild(new Model(“Mars.obj”));
world.addChild(earth2world);
world.addChild(mars2world);

// create moons:
moon2earth = new Transform(…);
phobos2mars = new Transform(…);
deimos2mars = new Transform(…);
moon2earth.addChild(new Model(“Moon.obj”));
phobos2mars.addChild(new Model(“Phobos.obj”));
deimos2mars.addChild(new Model(“Deimos.obj”));
earth2world.addChild(moon2earth);
mars2world.addChild(phobos2mars);
mars2world.addChild(deimos2mars);

Transformation Calculations
 moon2world = moon2earth * earth2world;
 phobos2world = phobos2mars * mars2world;
 deimos2world = deimos2mars * mars2world;

17

Scene Rendering

Transform::draw(Matrix4 M)
{

M_new = M * MT; // MT is a class member
for all children

draw(M_new);
}

Geometry::draw(Matrix4 M)
{

setModelMatrix(M);
render(myObject);

}

 Recursive draw calls

Initiate rendering with
world->draw(IDENTITY);

18

Scene Graph Example: Bedroom

19

Image Source: COMPSCI290/Duke University

Ideas for Scene Graph Nodes
 Change tree structure

 Add, delete, rearrange nodes

 Change node parameters
 Transformation matrices
 Shape of geometry data
 Materials

 Create new node subclasses
 Animation, triggered by timer events
 Dynamic drone-style camera
 Light source

 Provide complex functionality as nodes
 Video node
 Elevator node with buttons to press and sliding door mechanism
 Terrain rendering node

20

	CSE 167:�Introduction to Computer Graphics�Lecture #11: Scene Graph
	Announcements
	Lecture Overview
	Graphics System Architecture
	Commonly Offered Functionality
	Lecture Overview
	Scene Graphs
	Example: Scene Graph for Solar System
	Data Structure
	Class Hierarchy
	Sample Class Hierarchy
	Class Hierarchy
	Class Hierarchy
	Class Hierarchy
	Scene Graph for Solar System
	Building the Solar System
	Transformation Calculations
	Scene Rendering
	Scene Graph Example: Bedroom
	Ideas for Scene Graph Nodes

