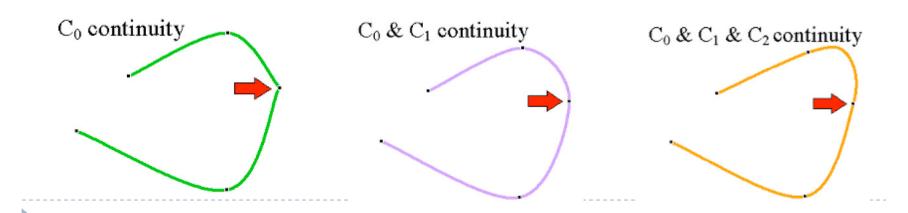
CSE 167:

Introduction to Computer Graphics Lecture #13: Shader Effects


> Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

Announcements

- CAPE: on-line, email notification at beginning of week 9
 - Period: Monday 11/21 to Monday 12/5
 - http://www.cape.ucsd.edu
- Homework introduction for final project: Monday, Nov 19
 - Project description will go on-line this Friday
 - Final project will require you to work in teams of 2 or 3 people
- Homework assignment #6 due Friday, Nov 16
 - Introduction today after class
 - C¹ vs. G¹ continuity

Parametric Continuity

- ▶ C⁰ continuity:
 - Curve segments are connected
- ► C¹ continuity:
 - C⁰ & 1st-order derivatives agree
 - Curves have same tangents
 - Relevant for smooth shading
- ► C² continuity:
 - ▶ C¹ & 2nd-order derivatives agree
 - Curves have same tangents and curvature
 - Relevant for high quality reflections

Geometric Continuity

- ▶ **G**⁰:
 - Curve segments are connected
 - ▶ Same as C⁰
- ▶ G¹:
 - ▶ G⁰ & Ist-order derivatives are proportional at joints
 - Proportional = same direction but may have different magnitudes
 - Weaker than C^I
- $ightharpoonup G^2$:
 - ▶ G¹ & 2nd-order derivative proportional at joints

Lecture Overview

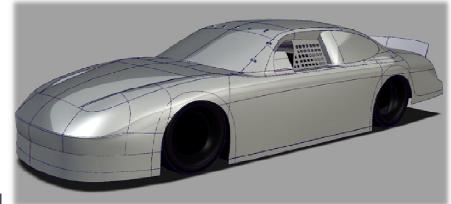
Advanced surface modeling

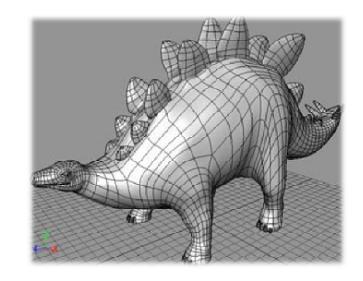
Advanced Shader Effects

- Environment mapping
- ▶ Toon shading

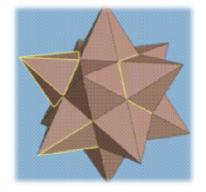
Problems with Bezier and NURBS Patches

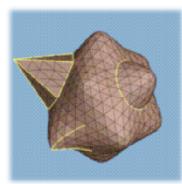
NURBS surfaces are versatile

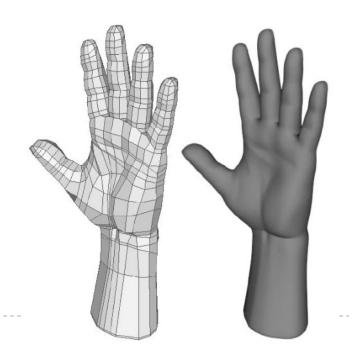

- Conic sections
- ▶ Can blend, merge, trim...


But:

 Any surface will be made of quadrilateral patches (quadrilateral topology)


- Join or abut curved pieces
- Build surfaces with complex topology or structure





Subdivision Surfaces

- Works by recursively subdividing mesh faces
 - Per-vertex annotation for weights, corners, creases
- Used in particular for character animation
 - One surface rather than collection of patches
 - Can deform geometry without creating cracks

Subdivision Surfaces

- Video
 - http://vimeo.com/2650080

Lecture Overview

Advanced surface modeling

Advanced Shader Effects

- Environment mapping
- ▶ Toon shading

More Realistic Illumination

- In the real world:
 - At each point in scene light arrives from all directions
 - Not just from a few point light sources
 - → Global Illumination is a solution, but computationally expensive
- Environment Maps
 - Store "omni-directional" illumination as images
 - ▶ Each pixel corresponds to light from a certain direction

Capturing Environment Maps

- "360 degrees" panoramic image
- Instead of 360 degrees panoramic image, take picture of mirror ball (light probe)

Light Probes by Paul Debevec http://www.debevec.org/Probes/

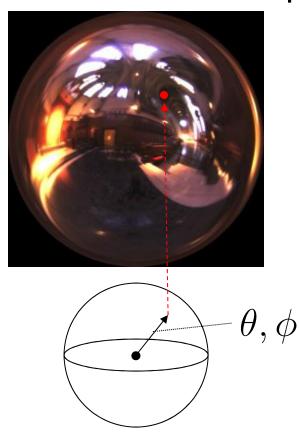
Environment Maps as Light Sources

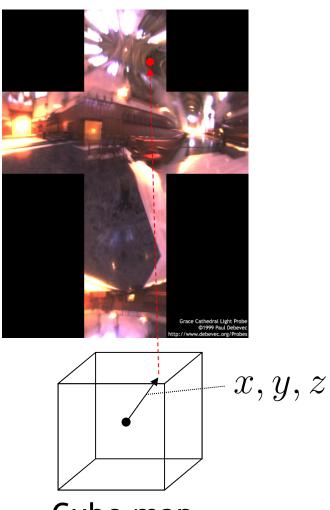
Simplifying Assumption

- Assume light captured by environment map is emitted from infinitely far away
- Environment map consists of directional light sources
 - Value of environment map is defined for each direction, independent of position in scene
- Approach uses same environment map at each point in scene
 - → Approximation!

Applications for Environment Maps

Use environment map as "light source"


Global illumination with pre-computed radiance transfer [Sloan et al. 2002]


Reflection mapping [Terminator 2, 1991]

Cubic Environment Maps

Store incident light on six faces of a cube instead of on sphere


Cube map

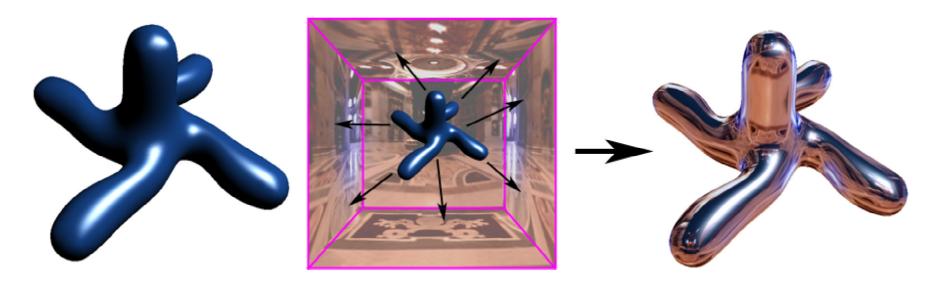
Cubic vs. Spherical Maps

Advantages of cube maps:

- More even texel sample density causes less distortion, allowing for lower resolution maps
- Easier to dynamically generate cube maps for real-time simulated reflections

Bubble Demo

http://download.nvidia.com/downloads/nZone/demos/nvidia/Bubble.zip


Cubic Environment Maps

Cube map look-up

- Given: light direction (x, y, z)
- Largest coordinate component determines cube map face
- Dividing by magnitude of largest component yields coordinates within face
- In GLSL:
 - Use (x,y,z) direction as texture coordinates to samplerCube

Reflection Mapping

- Simulates mirror reflection
- Computes reflection vector at each pixel
- Use reflection vector to look up cube map
- Rendering cube map itself is optional (application dependent)

Reflection mapping

Reflection Mapping in GLSL

Application Setup

Load and bind a cube environment map

```
glBindTexture(GL_TEXTURE_CUBE_MAP, ...);
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X,...);
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X,...);
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y,...);
...
glEnable(GL_TEXTURE_CUBE_MAP);
```

Reflection Mapping in GLSL

Vertex shader

- Compute viewing direction
- Reflection direction
 - Use reflect function
- ▶ Pass reflection direction to fragment shader

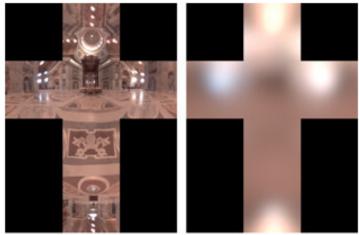
Fragment shader

Look up cube map using interpolated reflection direction

```
varying float3 refl;
uniform samplerCube envMap;
textureCube(envMap, refl);
```

Environment Maps as Light Sources

Covered so far: shading of a specular surface


→ How do you compute shading of a diffuse surface?

Diffuse Irradiace Environment Map

- Given a scene with k directional lights, light directions $d_1..d_k$ and intensities $i_1..i_k$, illuminating a diffuse surface with normal n and color c
- Pixel intensity B is computed as: $B = c \sum_{j=1..k} \max(0, d_j \cdot n) i_j$
- Cost of computing B proportional to number of texels in environment map!
- ▶ → Precomputation of diffuse reflection
- Observations:
 - \triangleright All surfaces with normal direction *n* will return the same value for the sum
 - The sum is dependent on just the lights in the scene and the surface normal
- Precompute sum for any normal n and store result in a second environment map, indexed by surface normal
- Second environment map is called diffuse irradiance environment map
- Allows to illuminate objects with arbitrarily complex lighting environments with single texture lookup

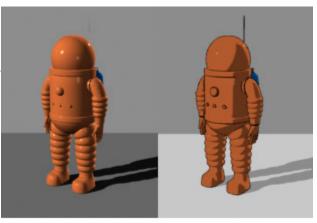
Diffuse Irradiace Environment Map

- ▶ Two cubic environment maps:
 - Reflection map
 - Diffuse map

Diffuse shading vs. shading w/diffuse map

Image source: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter10.html

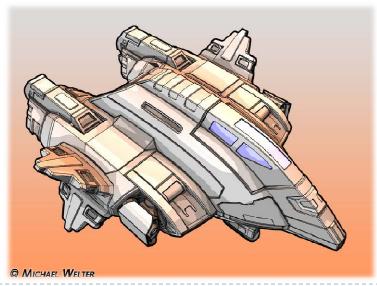
Lecture Overview


Advanced surface modeling

Advanced Shader Effects

- Environment mapping
- Toon shading

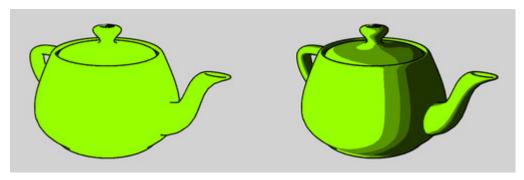
Toon Shading


- A.k.a. Cel Shading ("Cel" is short for "celluloid" sheets, on which animation was hand-drawn)
- Gives any 3D model a cartoon-style look
- Emphasizes silhouettes
- Discrete steps for diffuse shading, highlights
- Non-photorealistic rendering method (NPR)
- Programmable shaders allow real-time performance

plastic shader

toon shader

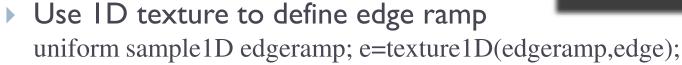
Source: Wikipedia

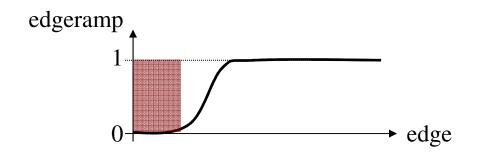

Off-line toon shader

GLSL toon shader

Approach

- Start with regular 3D model
- Apply two rendering tricks:
 - Silhouette edges
 - Emphasize pixels with normals perpendicular to viewing direction.
 - Discretized shading
 - Conventional (smooth) lighting values calculated for each pixel, then mapped to a small number of discrete shades.




Source: Wikipedia

Silhouette Edges

- Silhouette edge detection
 - Compute dot product of viewing direction v and normal n

$$edge = \max(0, \mathbf{n} \cdot \mathbf{v})$$

Discretized Shading

Compute diffuse and specular shading $diffuse = \mathbf{n} \cdot \mathbf{L} \quad \text{specular} = (\mathbf{n} \cdot \mathbf{h})^s$

- Use ID textures diffuseramp, specularramp to map diffuse and specular shading to colors
- Final color:

```
uniform sampler1D diffuseramp;
uniform sampler1D specularramp;
c = e * (texture1D(diffuse, diffuseramp) +
texture1D(specular, specularramp));
```

Toon Shading Demo

http://www.bonzaisoftware.com/npr.html