Spring 2021

CSE 190

VR Technologies

Discussion 3

ANNOUNCEMENTS

- Congrats on Finishing Homework 1
- Homework 2 Beta Release
 - Tentatively Due Sunday (5/2)
 - VR Headset Required
 - Extra Credit TBD
- VR Headset to be distributed this week
 - Pick up tomorrow on campus
 - Shipped to your doorstep
 - Contact us ASAP if you have not received any email

AGENDA

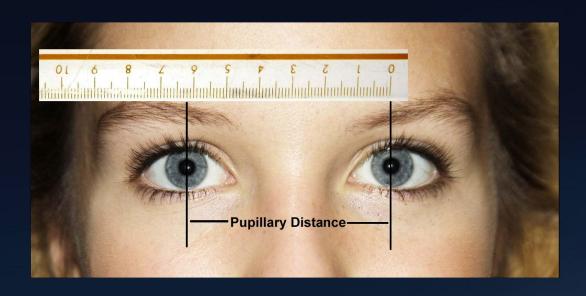
Homework 2 Getting Started

OBJECTIVE

Objectives

- Measurement Project
- Getting familiar with VR headset
- Measure and understand visual display characteristics
- Plan ahead and conduct planned experiments
- Get deeper understanding about stereo vision

COMPONENTS


Components

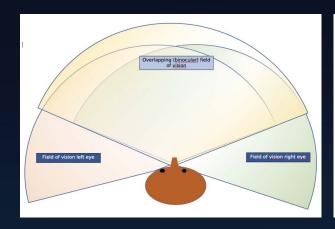
- Eye Distance
- Field of View
- Spatial Resolution
- Controller Tracking & Pointing Precision
- Eye Convergence Closest Distance
 - o Special Accommodation if you have difficulties seeing stereo image

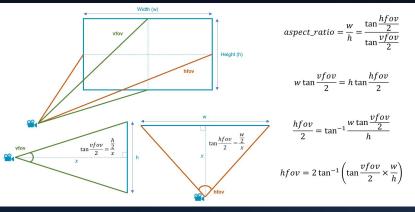
EYE DISTANCE

Eye Distance (Inter-Pupillary Distance)

Eye Distance (Inter-Pupillary Distance)

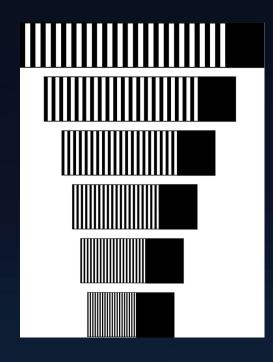
- The optical center of the lenses must be positioned corr in relation to the center of your pupils or undesired resu can ensue
 - eye fatigue
 - Headaches
 - Dizziness
- Correct IPD setting on VR headset provides maximum clarity and field of view
- IPD Can be changed on Oculus Quest 2 Headset

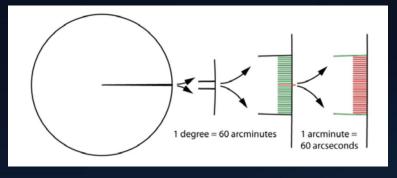



FIELD OF VIEW

Field of View

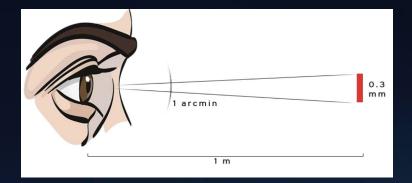
The total area in which VR images can be seen by a viewer at a particular time instant





SPATIAL RESOLUTION

Spatial Resolution



Spatial Resolution

y = r*tan(pi/180)/x

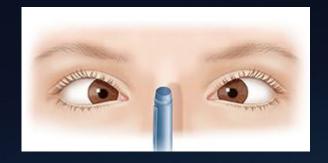
r: distance from eye to the line pair

x: spacing between line pairs

CONTROLLER PRECISION

Controller Precision

- Controller Tracking Precision
 - Controller Stationary
 - Obtain Location/Orientation Data
- Pointing Precision
 - "Whack-a-mole" style measurement
 - Create a ~10cm sphere in the scene
 - o 20 sec timer
 - Use laser pointer and hit the sphere 20 times
 - Count number of hits and calculate hit percentage
 - Move further away from the sphere, repeat until <50% hit rate



CLOSEST EYE CONVERGENCE DISTANCE

Closest Eye Convergence Distance

- Create an object that can be moved along the Z axis.
- Place the object 3 feet from eye.
- Move object closer with controller buttons or joystick until eyes can no longer focus on it.
- Special Accommodation: If you can't see stereoscopic
 3D, you can recruit a friend or family member to do the test.

QUESTIONS?

