CSE 167: Introduction to Computer Graphics

Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016

Today

- Course organization
- Course overview

Course Staff

Instructor

Jürgen Schulze, Ph.D.
Adjunct Professor in CSE
Research Scientist at Qualcomm Institute

Assistants

- Teaching Assistants:
 - Dylan McCarthy
 - Kevin Lim
 - Azeem Ghumman
- Tutors:
 - David Nuernberger
 - Hoang Tran
 - Michelle Wu

Weekly Schedule

Lecture

▶ Tue/Thu, 2:00pm-3:20pm, Center Hall 214

Homework Discussion

Mondays, 4:00-4:50pm, Center Hall 113

Homework Grading

- Due dates are every other Friday at 2:00pm
- ▶ Turn in by demonstration in CSE lab 260 or 270

Office Hours

Instructor

▶ Tue 3:30pm-4:30pm, Atkinson Hall, room 2125

TAs and Tutors

- ▶ Held in basement lab 260
- ▶ Posted on Piazza

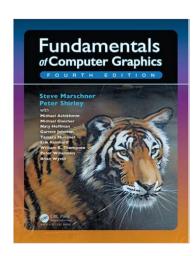
Prerequisites

Expected is familiarity with:

-) C++
- Object oriented programming concepts
- CSE 100: Advanced Data Structures
 - Advanced data structures in C++, e.g., graphs
 - Data structure analysis
 - Reason about appropriate data structures to solve problems
 - ▶ C++ with STL
 - GIT for code management

Course Web Site

- ▶ URL: http://ivl.calit2.net/wiki/index.php/CSE167S2016
- Provides:
 - Course schedule
 - Lecture slides
 - Textbook recommendations
 - Homework assignments
 - Grading + exam information


TritonEd

- Lists homework and exam grades
 - Check your grades regularly
 - Let us know if your grade is missing or incorrect
- Upload source code
 - Only ASCII (text) files

Textbooks

Recommended textbooks:

- Peter Shirley: Fundamentals of Computer Graphics, Fourth Edition
 - Earlier editions mostly okay
 - Google Books has full text version of edition 3
- ▶ OpenGL Programming Guide, Version 4.3
 - Older versions available on-line

Programming Projects

- ▶ 5 programming assignments
 - Only final project is team project
- Find assignments and due dates on home page
 - Due dates every other week
- Starter code is also on home page
- Use CSE basement labs or your own PC/laptop
 - Windows, Mac or Linux
- Individual assistance by TAs/tutors during office hours
- Turn in by demonstration to course staff during homework grading hours on Fridays
 - Demonstration can be done on lab PC or personal laptop
 - Grading from 2pm until at least 3:15pm
 - Required: submit source code to TritonEd by 2pm
- All programming projects have extra credit option

If you can't come to grading

- Submit source code by 2pm on due date
- ▶ Email instructor:
 - Reason of absence
 - When you can demo instead (in TA/tutor office hours)

Written Examinations

- Two in-class written exams
- Closed book
- No cheat sheets
- Allowed:
 - pen, pencil, ruler, eraser
 - blank scratch paper
- Dates listed on course schedule

Grading

▶ Homework Assignments 1-4: 15% each

▶ 2 midterm exams: 10% each

Final project: 20%

- Late submission policy for homework projects:
 - Allowed within I week of due date, with 25% penalty
 - Example: for perfect score of 110 points (including extra credit), when submitted late you will get 83 points)
 - No partial penalty if submitting earlier
 - No points if submitting later than I week after due date

Grading Key

- No grading on curve
- Grading key:

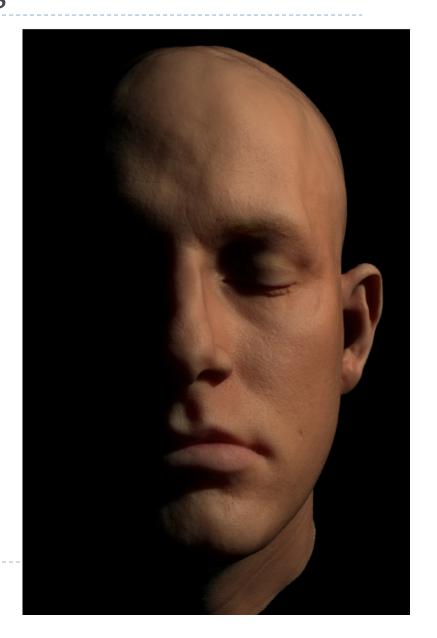
Final Score	Letter Grade
100+	A+
95+	Α
90+	A-
85+	B+
80+	В
75+	B-
70+	C+
65+	С
60+	C-

Today

- Course organization
- Course overview

Rendering

- Synthesis of a 2D image from a 3D scene description
 - Rendering algorithm interprets data structures that represent the scene in terms of geometric primitives, textures, and lights
- ▶ 2D image is an array of pixels
 - Red, green, blue values for each pixel
- Objectives
 - Photorealistic
 - Interactive


Photorealistic rendering

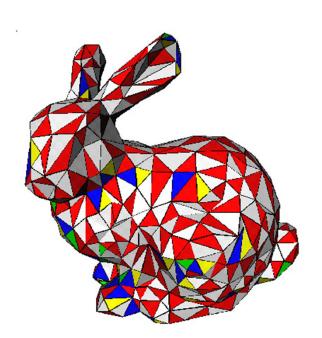
- Physically-based simulation of light, camera
- Shadows, global illumination, multiple bounces of light
- Slow, can take minutes or hours to render an image
- Used in movies, animation
- Covered in CSE168: Rendering Algorithms

Photorealistic rendering

Interactive rendering

- Produce images within milliseconds
- Using specialized hardware, graphics processing units (GPUs)
- Standardized APIs (OpenGL, DirectX)
- Often "as photorealistic as possible"
- Hard shadows, only single bounce of light
- Used in games
- Covered in this course

Interactive rendering



What to render?

- ▶ 3D models
- ▶ Basic 3D models consist of array of triangles

▶ 3D model sources:

- Created with 3D modeling tool
- Loaded from files
- Procedurally generated: by code you write
- Created by scanning real-world objects

Modeling

Procedural tree

Scanned statue

Basic skills:

- Vector and matrix mathematics
- Coordinate system transformations
- ▶ 3D to 2D projection
- Rasterization

- OpenGL:
 - Lighting
 - Texturing
 - Shading
 - ▶ GL Shading Language

- High Level Concepts:
 - Scene Graph
 - Culling
 - Parametric Curves and Surfaces
 - Procedural Modeling

- Visual Effects:
 - Environment Mapping
 - Shadows
 - Deferred Rendering

Previous Final Projects

- ▶ The Final Whaleboat (1:00)
 - Marco Mendez and Thomas Tucker, Fall 2015
 - https://www.youtube.com/watch?v=pX5Tuh6tDXc
- Space Ace! (1:00)
 - Jun Heo and Benjamin King, Fall 2015
 - https://www.youtube.com/watch?v=Ru-k87JnDJ8
- ▶ The Renderers (1:00)
 - Jack Lee and Kevin Quong, Fall 2015
 - https://www.youtube.com/watch?v=pXn7tbpCGJw
- Fist Bump (2:00)
 - Alex Hawker, Jeffrey Johnson, Michael LaPlante, Fall 2015
 - https://www.youtube.com/watch?v=ohuvRGDKbog