Discussion 3
CSE 167




\ Any questions regarding part 1and 27

e Project 2 revisit.


http://ivl.calit2.net/wiki/images/2/2d/Discussion02F19.pdf
http://ivl.calit2.net/wiki/index.php/Project2F19

\ Outline

e Shaders
e Lights & Materials
e Coordinate systems for interactive control



Shaders

VERTEX SHADER SHAPE ASSEMBLY GEOMETRY SHADER
N DATA[] e.ee
L 1]
o
n
5 H
= .:- e

TESTS AND BLENDING FRAGMENT SHADER RASTERIZATION



Shaders - Vertex Shader

#version 330 core

layout ([location = @) in vec3 position;
layout ([location = 1) in vec3 normal;
uniform mat4 projection;

uniform mat4 view;
uniform mat4 model;

out vec3 |normalOut :
out vec3 |posOutput;

void main()
{

gl_Position = projection x view *x model * vec4(position, 1.0);

TODO: Transform vertices and normals from to
before passing it to fragment shaders.

please read on to avoid transforming
normals incorrectly.


https://learnopengl.com/Lighting/Basic-Lighting

Shaders - Vertex Shader
layout ([location = @) in vec3 position;
layout () in vec3 normal;

glVertexAttribPointer(@®, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), 9);

e InPointCloud.cpp, the first parameter of glVertexAttribPointer should be the same as the location
number in the shader.

uniform mat4 projection;

uniform mat4 view;
uniform mat4 model;

glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection));
glUniformMatrix4fv(viewlLoc, 1, GL_FALSE, glm::value ptr(view));
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value ptr(model));

e InWindows.cpp, the glUniformLocation should have the same name as the parameters in the shader.



Shaders - Fragment Shader #version 330 core

in vec3 |[normalOutput;

in vec3 |posOutput;
uniform vec3 lightAttri;
uniform vec3 lightAttr2;

e normalOutput and posOutput are the output from

Vertex Shader.
e You should pass light attributes (e.g. color) as
glUniforms to specify the attributes of light source. out vech fragColor;
e fragColor is the final color of the pixel coming out of ) .
void main()
the shader. {
e TODO: Use phong lighting and linear attenuation to vec3 ambient

calculate fragment color here.
vec3 diffuse

vec3 specular = ...

fragColor = ...




Shaders

e Shader loading is given in shader.cpp, please refer to this link for further
understanding if interested:
https://learnopengl.com/Getting-started/Hello-Triangle



https://learnopengl.com/Getting-started/Hello-Triangle

Lights

=1ale Local Illumination

Materials Simplified model

» Sum of 3 components
c - lighting
k - material » Covers a large class of real surfaces

2000

diffuse specular ambient




Diffuse

Diffuse Reflection

» Given
Unit (normalized!) surface normal n
Unit (normalized!) light direction L
Material diffuse reflectance (material color) k,
Light color (intensity) ¢,

diffuse Ci
» Diffuse color ¢, is: 0
I, n
Cd = clkd(n . L)
H_J
Proportional to cosine
ka

between normal and light

° = UCSD




Specular

specular

Law of Reflection

» Angle of incidence equals angle of reflection
R+L=2cosf ii= 2(f,~ﬁ)ﬁ

R=2(L-n)i-L

23

=< UCSD



glm::vec3 Window::eye(@, @, 20); // Camera position.

Specular
Phong Shading Model

» Developed by Bui Tuong Phong in1973
» Specular reflectance coefficient k
» Phong exponent p

Greater p means smaller (sharper) highlight

specular

e - eye direction
(unit vector)




Ambient

ambient

Ambient Light

» In real world, light is bounced all around scene
» Could use global illumination techniques to simulate
» Simple approximation

Add constant ambient light at each point: k c,
Ambient light color:c,

Ambient reflection coefficient: k,,

» Areas with no direct illumination are not completely dark

30

= UCSD



Complete Phong Shading Model

» Phong model supports multiple light sources

» All light colors c and material coefficients k are
3-component vectors for red, green, blue

e Zq (ky(L; - 1) + k(R - €)P + k)

Ambient + Diffuse Specular = Phong Reflection

Image by Brad Smith

=< UCSD



Point Lights

e Similar to light bulbs
e Infinitely small point radiates light equally in all directions

Receiving surface




Light Attenuation

» Adding constant factor k to denominator for better
control

» Quadratic attenuation: k*(p-v)?

Most computationally expensive, most physically correct
»| Linear attenuation: k*(p-v)
Less expensive, less accurate

» Constant attenuation: k

Fastest computation, least accurate

Attenuation: €l =




Helpful Resources

e Tutorial on how to code spot light and material is here.
o We are using only the linear term, so we are not looking for
a complete copy of this piece of code.
o You will need to tune your color so that the object looks
reasonable.


https://learnopengl.com/Lighting/Light-casters

Coordinate Systems for Interactive Control

Mode Mouse Button Mouse Wheel (or similar)
o Rotates 3D model about its center. Light source SFaIes S meeel SIEOL i e
1 \ Light source stays fixed for the
stays fixed for the viewer. .
viewer.
. Rotates the light source around the center of the veves el seures dessr i ey
2 . further from the center of the 3D
3D model. 3D model stays fixed for the viewer. model
Scales the 3D model about its
3 Rotates both 3D model and light source by the center and moves the light source

same amount.

like above.




Rotating point p around a pivot point

]

1. Translation T 2. Rotation R 3. Translation T

pP=T'RTp



\ Demo Time

Any questions?



