CSE 167:

Introduction to Computer Graphics Lecture #13: Surface Patches

Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2018

Announcements

- Tomorrow: Discussion
 - Covering project 4 implementation issues
- Project 4 due this Friday
 - ▶ Grading in CSE basement labs B260 and B270
 - Upload code to TritonEd by 2pm
 - Grading order managed by Autograder

Overview

- ▶ Bi-linear patch
- ▶ Bi-cubic Bézier patch

Curved Surfaces

Curves

- Described by a ID series of control points
- \blacktriangleright A function $\mathbf{x}(t)$
- Segments joined together to form a longer curve

Surfaces

- Described by a 2D mesh of control points
- Parameters have two dimensions (two dimensional parameter domain)
- \blacktriangleright A function $\mathbf{x}(u,v)$
- Patches joined together to form a bigger surface

Parametric Surface Patch

- $\mathbf{x}(u,v)$ describes a point in space for any given (u,v) pair
 - ▶ u,v each range from 0 to I

Parametric Surface Patch

- $\mathbf{x}(u,v)$ describes a point in space for any given (u,v) pair
 - v u, v each range from 0 to 1

Parametric curves

- 2D parameter domain
- For fixed u_0 , have a v curve $\mathbf{x}(u_0, v)$
- For fixed v_0 , have a u curve $\mathbf{x}(u, v_0)$
- For any point on the surface, there are a pair of parametric curves through that point

Tangents

The tangent to a parametric curve is also tangent to the surface

For any point on the surface, there are a pair of (parametric) tangent vectors

Note: these vectors are not necessarily perpendicular to each

other

Surface Normal

- Normal is cross product of the two tangent vectors
- Order of vectors matters!

$$\mathbf{n}^{r}(u,v) = \frac{\partial \mathbf{x}}{\partial u}(u,v) \times \frac{\partial \mathbf{x}}{\partial v}(u,v)$$

Typically we are interested in the unit normal, so we need to normalize

$$\mathbf{\hat{n}}^{*}(u,v) = \frac{\partial \mathbf{x}}{\partial u}(u,v) \times \frac{\partial \mathbf{x}}{\partial v}(u,v)$$

$$\mathbf{\hat{n}}(u,v) = \frac{\mathbf{\hat{n}}^{*}(u,v)}{|\mathbf{\hat{n}}^{*}(u,v)|}$$

- ▶ Control mesh with four points p_0 , p_1 , p_2 , p_3
- ▶ Compute x(u,v) using a two-step construction scheme

Bilinear Patch (Step 1)

- For a given value of u, evaluate the linear curves on the two u-direction edges
- Use the same value *u* for both:

Bilinear Patch (Step 2)

- ▶ Consider that q_0 , q_1 define a line segment
- Evaluate it using v to get x

$$\mathbf{x} = Lerp(v, \mathbf{q}_0, \mathbf{q}_1)$$

▶ Combining the steps, we get the full formula

$$\mathbf{x}(u,v) = Lerp(v, Lerp(u, \mathbf{p}_0, \mathbf{p}_1), Lerp(u, \mathbf{p}_2, \mathbf{p}_3))$$

- ▶ Try the other order
- ▶ Evaluate first in the *v* direction

$$\mathbf{r}_0 = Lerp(v, \mathbf{p}_0, \mathbf{p}_2)$$
 $\mathbf{r}_1 = Lerp(v, \mathbf{p}_1, \mathbf{p}_3)$

- ightharpoonup Consider that r_0 , r_1 define a line segment
- ightharpoonup Evaluate it using u to get \mathbf{x}

$$\mathbf{x} = Lerp(u, \mathbf{r}_0, \mathbf{r}_1)$$

▶ The full formula for the *v* direction first:

$$\mathbf{x}(u,v) = Lerp(u, Lerp(v, \mathbf{p}_0, \mathbf{p}_2), Lerp(v, \mathbf{p}_1, \mathbf{p}_3))$$

Patch geometry is independent of the order of *u* and *v*

$$\begin{vmatrix} \mathbf{x}(u,v) = Lerp(v, Lerp(u, \mathbf{p}_0, \mathbf{p}_1), Lerp(u, \mathbf{p}_2, \mathbf{p}_3)) \\ \mathbf{x}(u,v) = Lerp(u, Lerp(v, \mathbf{p}_0, \mathbf{p}_2), Lerp(v, \mathbf{p}_1, \mathbf{p}_3)) \end{vmatrix}$$

Visualization

Weighted sum of control points

$$\mathbf{x}(u,v) = (1-u)(1-v)\mathbf{p}_0 + u(1-v)\mathbf{p}_1 + (1-u)v\mathbf{p}_2 + uv\mathbf{p}_3$$

Bilinear polynomial

$$\mathbf{x}(u,v) = (\mathbf{p}_0 - \mathbf{p}_1 - \mathbf{p}_2 + \mathbf{p}_3)uv + (\mathbf{p}_1 - \mathbf{p}_0)u + (\mathbf{p}_2 - \mathbf{p}_0)v + \mathbf{p}_0$$

Matrix form

$$x(u,v) = \begin{bmatrix} 1-u & u \end{bmatrix} \begin{bmatrix} p_0 & p_2 \\ p_1 & p_3 \end{bmatrix} \begin{bmatrix} 1-v \\ v \end{bmatrix}$$

Properties

- Patch interpolates the control points
- The boundaries are straight line segments
- If all 4 points of the control mesh are co-planar, the patch is flat
- If the points are not co-planar, we get a curved surface
 - saddle shape (hyperbolic paraboloid)
- ▶ The parametric curves are all straight line segments!
 - a (doubly) ruled surface: has (two) straight lines through every point

Not terribly useful as a modeling primitive

Overview

- ▶ Bi-linear patch
- Bi-cubic Bézier patch

Bicubic Bézier patch

- Grid of 4x4 control points, \mathbf{p}_0 through \mathbf{p}_{15}
- Four rows of control points define Bézier curves along u $\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3; \ \mathbf{p}_4, \mathbf{p}_5, \mathbf{p}_6, \mathbf{p}_7; \mathbf{p}_8, \mathbf{p}_9, \mathbf{p}_{10}, \mathbf{p}_{11}; \mathbf{p}_{12}, \mathbf{p}_{13}, \mathbf{p}_{14}, \mathbf{p}_{15}$
- Four columns define Bézier curves along v $p_0,p_4,p_8,p_{12}; p_1,p_6,p_9,p_{13}; p_2,p_6,p_{10},p_{14}; p_3,p_7,p_{11},p_{15}$

Bézier Patch (Step 1)

- Fixed Evaluate four u-direction Bézier curves at scalar value u [0..1]
- ▶ Get points $\mathbf{q}_0 \dots \mathbf{q}_3$ $\mathbf{q}_0 = Bez(u, \mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)$ $\mathbf{q}_1 = Bez(u, \mathbf{p}_4, \mathbf{p}_5, \mathbf{p}_6, \mathbf{p}_7)$ $\mathbf{q}_2 = Bez(u, \mathbf{p}_8, \mathbf{p}_9, \mathbf{p}_{10}, \mathbf{p}_{11})$ $\mathbf{q}_3 = Bez(u, \mathbf{p}_{12}, \mathbf{p}_{13}, \mathbf{p}_{14}, \mathbf{p}_{15})$

Bézier Patch (Step 2)

- ▶ Points q₀ ... q₃ define a Bézier curve
- Fivaluate it at v[0..1] $\mathbf{x}(u,v) = Bez(v,\mathbf{q}_0,\mathbf{q}_1,\mathbf{q}_2,\mathbf{q}_3)$

Bézier Patch

 \blacktriangleright Same result in either order (evaluate u before v or vice versa)

$$\mathbf{q_0} = Bez(u, \mathbf{p_0}, \mathbf{p_1}, \mathbf{p_2}, \mathbf{p_3}) \qquad \mathbf{r_0} = Bez(v, \mathbf{p_0}, \mathbf{p_4}, \mathbf{p_8}, \mathbf{p_{12}})$$

$$\mathbf{q_1} = Bez(u, \mathbf{p_4}, \mathbf{p_5}, \mathbf{p_6}, \mathbf{p_7}) \qquad \mathbf{r_1} = Bez(v, \mathbf{p_1}, \mathbf{p_5}, \mathbf{p_9}, \mathbf{p_{13}})$$

$$\mathbf{q_2} = Bez(u, \mathbf{p_8}, \mathbf{p_9}, \mathbf{p_{10}}, \mathbf{p_{11}}) \Leftrightarrow \mathbf{r_2} = Bez(v, \mathbf{p_2}, \mathbf{p_6}, \mathbf{p_{10}}, \mathbf{p_{14}})$$

$$\mathbf{q_3} = Bez(u, \mathbf{p_{12}}, \mathbf{p_{13}}, \mathbf{p_{14}}, \mathbf{p_{15}}) \qquad \mathbf{r_3} = Bez(v, \mathbf{p_3}, \mathbf{p_7}, \mathbf{p_{11}}, \mathbf{p_{15}})$$

$$\mathbf{x}(u, v) = Bez(v, \mathbf{q_0}, \mathbf{q_1}, \mathbf{q_2}, \mathbf{q_3}) \qquad \mathbf{x}(u, v) = Bez(u, \mathbf{r_0}, \mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3})$$

Bézier Patch: Matrix Form

$$\mathbf{U} = \begin{bmatrix} u^3 \\ u^2 \\ u \\ 1 \end{bmatrix} \quad \mathbf{V} = \begin{bmatrix} v^3 \\ v^2 \\ v \\ 1 \end{bmatrix} \quad \mathbf{B}_{Bez} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \mathbf{B}_{Bez}^T$$

$$\mathbf{C}_{x} = \mathbf{B}_{Bez}^{T} \mathbf{G}_{x} \mathbf{B}_{Bez}$$

$$\mathbf{C}_{y} = \mathbf{B}_{Bez}^{T} \mathbf{G}_{y} \mathbf{B}_{Bez}$$

$$\mathbf{C}_{z} = \mathbf{B}_{Bez}^{T} \mathbf{G}_{z} \mathbf{B}_{Bez}$$

$$\mathbf{C}_{x} = \mathbf{B}_{Bez}^{T} \mathbf{G}_{x} \mathbf{B}_{Bez}
\mathbf{C}_{y} = \mathbf{B}_{Bez}^{T} \mathbf{G}_{y} \mathbf{B}_{Bez}
\mathbf{C}_{z} = \mathbf{B}_{Bez}^{T} \mathbf{G}_{z} \mathbf{B}_{Bez}$$

$$\mathbf{G}_{x} = \begin{bmatrix} p_{0x} & p_{1x} & p_{2x} & p_{3x} \\ p_{4x} & p_{5x} & p_{6x} & p_{7x} \\ p_{8x} & p_{9x} & p_{10x} & p_{11x} \\ p_{12x} & p_{13x} & p_{14x} & p_{15x} \end{bmatrix}, \mathbf{G}_{y} = \mathbf{L}, \mathbf{G}_{z} = \mathbf{L}$$

$$\mathbf{x}(u,v) = \begin{bmatrix} \mathbf{V}^T \mathbf{C}_x \mathbf{U} \\ \mathbf{V}^T \mathbf{C}_y \mathbf{U} \\ \mathbf{V}^T \mathbf{C}_z \mathbf{U} \end{bmatrix}$$

C stores the coefficients of the bicubic equation G stores the control point geometry
 B_{Bez} is the basis matrix (Bézier basis)
 U and V are the vectors formed from the powers of u and v

Properties

- Convex hull: any point on the surface will fall within the convex hull of the control points
- Interpolates 4 corner points
- Approximates other 12 points, which act as "handles"
- The boundaries of the patch are the Bézier curves defined by the points on the mesh edges
- The parametric curves are all Bézier curves

Tangents of a Bézier patch

- ▶ Remember parametric curves $\mathbf{x}(u,v_0)$, $\mathbf{x}(u_0,v)$ where v_0,u_0 is fixed
- ▶ Tangents to surface = tangents to parametric curves
- Tangents are partial derivatives of $\mathbf{x}(u, v)$
- Normal is cross product of the tangents

27

Tangents of a Bézier patch

$$\mathbf{q_0} = Bez(u, \mathbf{p_0}, \mathbf{p_1}, \mathbf{p_2}, \mathbf{p_3}) \\ \mathbf{q_1} = Bez(u, \mathbf{p_4}, \mathbf{p_5}, \mathbf{p_6}, \mathbf{p_7}) \\ \mathbf{q_2} = Bez(u, \mathbf{p_8}, \mathbf{p_9}, \mathbf{p_{10}}, \mathbf{p_{11}}) \\ \mathbf{q_3} = Bez(u, \mathbf{p_{12}}, \mathbf{p_{13}}, \mathbf{p_{14}}, \mathbf{p_{15}}) \\ \mathbf{q_3} = Bez(u, \mathbf{p_{12}}, \mathbf{p_{13}}, \mathbf{p_{14}}, \mathbf{p_{15}}) \\ \mathbf{q_5} \\ \mathbf{q_5} \\ \mathbf{q_5} \\ \mathbf{q_5} \\ \mathbf{q_6} \\ \mathbf{q_7} \\$$

Tessellating a Bézier patch

Uniform tessellation is most straightforward

- \blacktriangleright Evaluate points on a grid of u, v coordinates
- Compute tangents at each point, take cross product to get per-vertex normal
- Draw triangle strips with primitive type GL_TRIANGLE_STRIP

Adaptive tessellation/recursive subdivision

- Potential for "cracks" if patches on opposite sides of an edge divide differently
- Tricky to get right, not usually worth the effort

OpenGL Support

- OpenGL supports NURBS patches through GLU functions
- Structure:

```
gluBeginSurface(nurbs);
  gluNurbsSurface(GLUnurbs* nurbs,
  GLint sKnotCount, GLfloat* sKnots,
  GLint tKnotCount, GLfloat* tKnots,
  GLint sStride, GLint tStride,
  GLfloat* control,
  GLint sOrder, GLint tOrder,
  GLenum type);
gluEndSurface(nurbs);
```


Piecewise Bézier Surface

- Lay out grid of adjacent meshes of control points
- ▶ For C⁰ continuity, must share points on the edge
 - Each edge of a Bézier patch is a Bézier curve based only on the edge mesh points
 - So if adjacent meshes share edge points, the patches will line up exactly
- But we have a crease...

Grid of control points

Piecewise Bézier surface

C¹ Continuity

- We want the parametric curves that cross each edge to have C¹ continuity
 - ▶ So the handles must be equal-and-opposite across the edge:

Modeling With Bézier Patches

- Original Utah teapot, from Martin Newell's PhD thesis, consisted of 28 Bézier patches.
- The original had no rim for the lid and no bottom
- Later, four more patches were added to create a bottom, bringing the total to
 32
- ▶ The data set was used by a number of people, including graphics guru Jim Blinn. In a demonstration of a system of his he scaled the teapot by .75, creating a stubbier teapot. He found it more pleasing to the eye, and it was this scaled version that became the highly popular dataset used today.

Pixar's walking teapot

Comparing polygon to NURBS model

Polygon model

NURBS model

Poor surface quality

Pure, smooth highlights

Source: https://www.aliasworkbench.com

