CSE 167:
Introduction to Computer Graphics
Lecture #13: Surface Patches

Jurgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2018




Announcements

» Tomorrow: Discussion

Covering project 4 implementation issues

» Project 4 due this Friday

Grading in CSE basement labs B260 and B270
Upload code to TritonEd by 2pm
Grading order managed by Autograder
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Overview

» Bi-linear patch
» Bi-cubic Bézier patch
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Curved Surfaces

Curves

» Described by a ID series of control points

» A function x(?)

» Segments joined together to form a longer curve

Surfaces
» Described by a 2D mesh of control points

» Parameters have two dimensions (two dimensional parameter
domain)

» A function x(u,v)
» Patches joined together to form a bigger surface
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Parametric Surface Patch

» X(u,v) describes a point in space for any given (u,v) pair
u,v each range from 0O to |
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2D parameter domain



Parametric Surface Patch

» X(u,v) describes a point in space for any given (u,v) pair
u,v each range from 0O to |
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» Parametric curves 2D parameter domain

For fixed u,, have a v curve x(u,,V)
For fixed v,, have a u curve x(u,v,)

For any point on the surface, there are a pair of parametric
curves through that point
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Tangents

» The tangent to a parametric curve is also tangent to the
surface

» For any point on the surface, there are a pair of (parametric)
tangent vectors

» Note: these vectors are not necessarily perpendicular to each
other




Surface Normal

» Normal is cross product of OX
the two tangent vectors |

» Order of vectors matters!

16). 16).

{l(u,v) = a—u(u,v) X g(u,v)

Typically we are interested in the unit normal, so we need to normalize

n (M,V) - a(uav) X a(uav)
T =

h(u,v) = )
n’(u,v)




Bilinear Patch

» Control mesh with four points py, pys P2 P3

» Compute X(u,v) using a two-step construction scheme
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Bilinear Patch (Step 1)

» For a given value of u, evaluate the linear curves on the two u-
direction edges

» Use the same value u for both:

qo=Lerp(u,py,py) q,=Lerp(u,p,,p3)

Py, q;
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Bilinear Patch (Step 2)

» Consider that q,, q, define a line segment

» Evaluate it using v to get x

x = Lerp(v,q,,q,)

Py, q;
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Bilinear Patch

» Combining the steps, we get the full formula

x(u,v) = Lerp(v, Lerp(u,p,,p,), Lerp(u,p,,p;))

Py, q;
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Bilinear Patch

» Try the other order

» Evaluate first in the v direction

r, = Lerp(v,p,,p,) Y, =Lerp(v,p,,p,)
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Bilinear Patch

» Consider that r, r, define a line segment

» Evaluate it using u to get x

X = Lerp(uarmrl)

b = UCSD



Bilinear Patch

» The full formula for the v direction first:

x(u,v) = Lerp(u, Lerp(v,py,P, ), Lerp(v, p,, P3))
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Bilinear Patch

» Patch geometry is independent of the order of u and v

X(u,v) = Lerp(v, Lerp(u,p,,p, ), Lerp(u,p,,p;))
X(u,v) = Lerp(u, Lerp(v,p,,p, ), Lerp(v,p,,p;))
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Bilinear Patch

» Visualization
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Bilinear Patches

» Weighted sum of control points

x(u,v) = (1-u)(1=v)po+u(l—v)p1+ (1 —u)vps+uvp;
» Bilinear polynomial

x(u,v) = (Po—P1—P2+P3)uv+(P1—Po)u+(P2—Po)v+Po
» Matrix form

x(u,v) =1-u u]{po pz}{l—v}
P Ps] VY
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Properties

Patch interpolates the control points
The boundaries are straight line segments
If all 4 points of the control mesh are co-planar, the patch is flat

v v Vv Vv

If the points are not co-planar, we get a curved surface
saddle shape (hyperbolic paraboloid)
» The parametric curves are all straight line segments!
a (doubly) ruled surface: has (two) straight lines through every point

» Not terribly useful as a modeling primitive
19




Overview

» Bi-linear patch
» Bi-cubic Bézier patch
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Bicubic Bezier patch

» Grid of 4x4 control points, p, through p:

» Four rows of control points define Bézier curves along u

PosP15P25P3; P4sPs:P6>P75 P8:P9sP10sP 115 P12:P13:P145P15
» Four columns define Bézier curves along v

PosP4sPgsP125 P1sP6sP9sP 135 P2:P6sP10sP 14 P3sP7:P115P 15
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Bézier Patch (Step 1)

» Evaluate four u-direction Bézier curves at scalar value u [0..1]

» Get points do 93 q, = Bez(u,py,P,>P2>P3)
q, = Bez(u,p4,Ps>Ps-P7)
q, = Bez(u,pg, Py, Pio-P11)
q; = Bez(u, Py, P13, P14 Pis)
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Bézier Patch (Step 2)

» Points q, q; define a Bézier curve

» Evaluateitatv /0..1]
X(u,v) = Bez(v,q,,9,,9,,9;)
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Bézier Patch

» Same result in either order (evaluate u before v or vice versa)

q, = Bez(u,p,,P>P,,>P3) r, = Bez(v,py, P4, PssP1o)
q, = Bez(u,p,,Ps,Pe,P-) I, = Bez(v,p,,Ps,Py>Pi3)
q, = Bez(u,pg,PosP1osP1y) < T, =Bez(v,Py,PesPiosPis)
q, = Bez(t,p 5, P3P 14sPis) r; = Bez(v,p5,P7,P115P5)
x(u,v)= Bez(v,q,,4,,9,,9;) x(u,v) = Bez(u,r,,r,,1,,I;)
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Bézier Patch: Matrix Form

u 1%
2 2
u 1%
u 1%
1 1

C — BgeZG BBeZ
C,=B, G B,

Bez "y

Cz _ BgeZGzBBeZ

BBeZ

G =

X

V'CU
x(u,v)= V'C,U
_VTCZU_

25

1 3 -3 1
3 6 3 0|
303 0 o D
R 0 0]

Pox  Pix P Pi
Pax  Psx Pex P
Psx  Pox  Prox  Prix
| Pox Pisx Pux Pisx

C stores the coefficients of the bicubic equation
G stores the control point geometry

B;., is the basis matrix (Bézier basis)

U and V are the vectors formed from the powers

of uand v
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Properties

» Convex hull:any point on the surface will fall within the convex hull of the
control points

» Interpolates 4 corner points
» Approximates other |2 points, which act as “handles”

» The boundaries of the patch are the Bézier curves defined by the points on
the mesh edges

» The parametric curves are all Bézier curves




Tangents of a Bézier patch

» Remember parametric curves x(u,v,), X(¢,,v) where v, u,is
fixed

» Tangents to surface = tangents to parametric curves
» Tangents are partial derivatives of x(u,V)

» Normal is cross product of the tangents
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Tangents of a Bézier patch

q, = Bez(u,p,,p,,p,.P5) r, = Bez(v,p,,P,>Ps>P1y)
q, = Bez(u,p,,Ps,Ps.P;) r, = Bez(v,p,,Ps,Po,Py3)
q, = Bez(u,pg, Py, Pig-P11) r, = Bez(v,p,,Ps>PiosP1s)
q; = Bez(u,p,,,P 5P 14>Pi5) r; = Bez(v,p;,P7,P15P;s)
1) 1),
a(u,V) = BeZ,(Vaqoaqpqza(h) a_u(uav) = Bezl(uaroar1>r29r3)

ox
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Tessellating a Bézier patch

» Uniform tessellation is most straightforward
Evaluate points on a grid of u, v coordinates

Compute tangents at each point, take cross product to get per-vertex
normal

Draw triangle strips with primitive type GL_TRIANGLE_STRIP
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» Adaptive tessellation/recursive subdivision

Potential for “cracks” if patches on opposite sides of an edge divide
differently

Tricky to get right, not usually worth the effort
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OpenGL Support

» OpenGL supports NURBS patches through GLU
functions

» Structure:

gluBeginSurface (nurbs) ;

gluNurbsSurface (GLUnurbs* nurbs,
GLint sKnotCount, GLfloat* sKnots,
GLint tKnotCount, GLfloat* tKnots,
GLint sStride, GLint tStride,
GLfloat* control,

GLint sOrder, GLint tOrder,
GLenum type) ;

gluEndSurface (nurbs) ;
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Piecewise Beézier Surface

» Lay out grid of adjacent meshes of control points
» For C° continuity, must share points on the edge

Each edge of a Bézier patch is a Bézier curve based only on
the edge mesh points

So if adjacent meshes share edge points, the patches will line
up exactly

» But we have a crease...

Grid of control points Piecewise Bézier surface
31 =
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C! Continuity

» We want the parametric curves that cross each edge to
have C! continuity

» So the handles must be equal-and-opposite across the edge:




Modeling With Bézier Patches

» Original Utah teapot, from Martin
Newell's PhD thesis, consisted of 28
Bézier patches.

» The original had no rim for the lid and
no bottom

» Later, four more patches were added to
create a bottom, bringing the total to

S
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» The data set was used by a number of NN - @\

people, including graphics guru Jim
Blinn. In a demonstration of a system of
his he scaled the teapot by .75, creating
a stubbier teapot. He found it more
pleasing to the eye, and it was this
scaled version that became the highly
popular dataset used today. Pixar’s walking teapot

33 Source: http://www.holmes3d.net/graphics/teapot/ ‘v:;__ UC SD




Comparing polygon to NURBS model

Poor surface quality Pure, smooth highlights

Source: https://www.aliasworkbench.com



