CSE 167: Introduction to Computer Graphics Lecture #3: Projection

Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2014

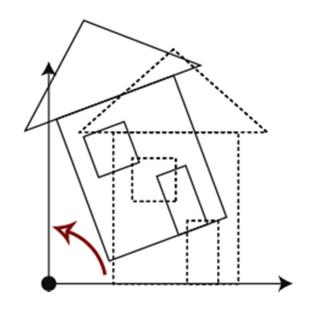
Announcements

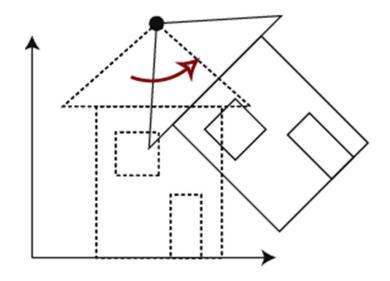
- Project I due Friday, 10/17
- Discussion section on Mondays is now in a new location at a different time:
 - Building CSB (Cognitive Science Building), room 001
 - ▶ 5:00-5:50pm
- ▶ We will have a discussion this coming Monday
- Piazza to replace Ted discussion board
- ▶ TA office hours (Dylan) in lab today: 5-7pm
- Independent study positions available (CSE 199):
 - Raspberry Pi scripting with Python
 - Android app with web backend

Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

How to rotate around a Pivot Point?



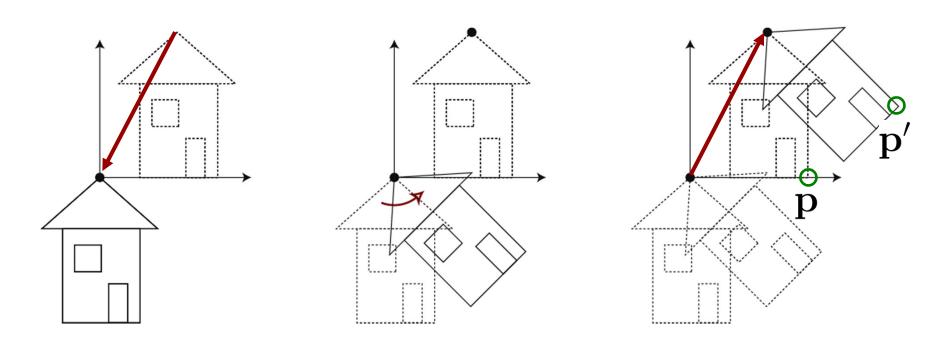


Rotation around origin:

$$p' = R p$$

Rotation around pivot point:

Rotating point p around a pivot point



1. Translation T 2. Rotation R 3. Translation T⁻¹

$$p' = T^{-1} R T p$$

Concatenating transformations

▶ Given a sequence of transformations $M_3M_2M_1$

$$\mathbf{p}' = \mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1 \mathbf{p}$$

$$\mathbf{M}_{total} = \mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1$$

$$\mathbf{p}' = \mathbf{M}_{total} \mathbf{p}$$

Note: associativity applies:

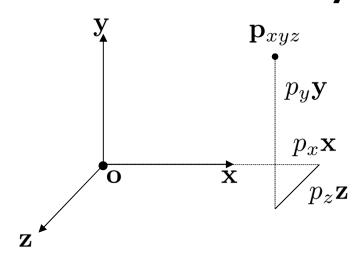
$$\mathbf{M}_{total} = (\mathbf{M}_3 \mathbf{M}_2) \mathbf{M}_1 = \mathbf{M}_3 (\mathbf{M}_2 \mathbf{M}_1)$$

Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Coordinate System

- Given point **p** in homogeneous coordinates: $\begin{bmatrix} p_y \\ p_z \\ 1 \end{bmatrix}$
- Coordinates describe the point's 3D position in a coordinate system with basis vectors x, y, z and origin o:

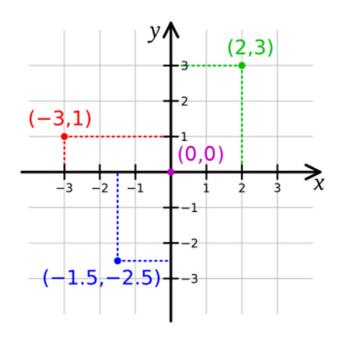


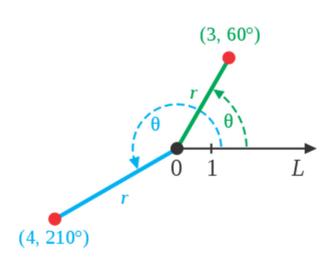
$$\mathbf{p}_{xyz} = p_x \mathbf{x} + p_y \mathbf{y} + p_z \mathbf{z} + \mathbf{o}$$

Rectangular and Polar Coordinates

Rectangular Coordinates

Polar Coordinates



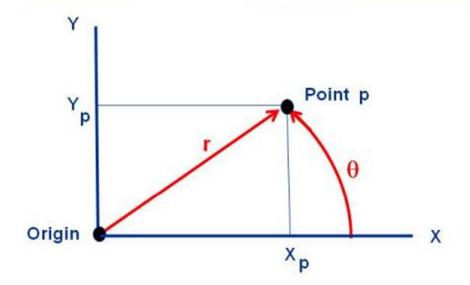


Images: Wikipedia

Rectangular and Polar Coordinates

National Aeronautics and Space Administration

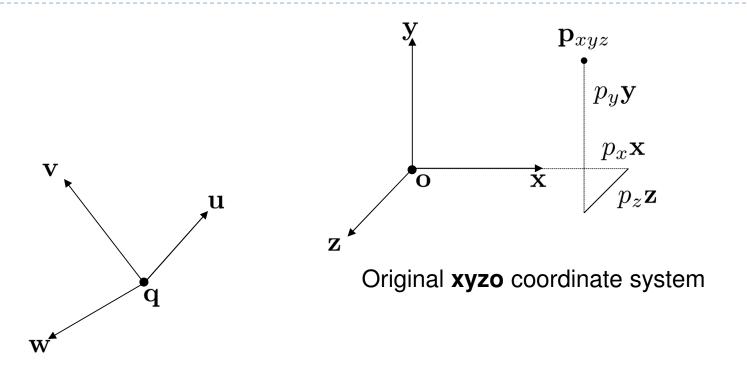
Rectangular and Polar Coordinates



Point p can be located relative to the origin by Rectangular Coordinates (X_p, Y_p) or by Polar Coordinates (r, θ)

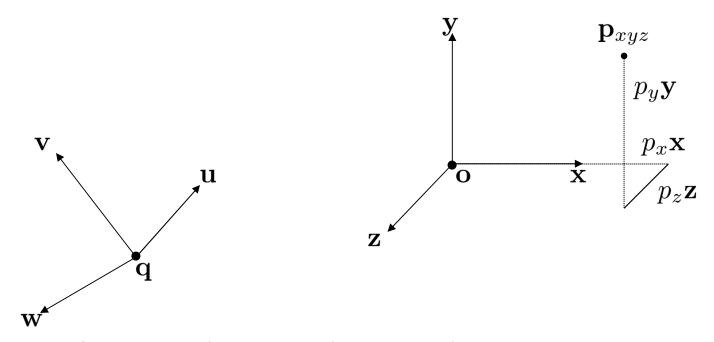
$$X_p = r \cos(\theta)$$
 $r = \operatorname{sqrt}(X_p^2 + Y_p^2)$
 $Y_p = r \sin(\theta)$ $\theta = \tan^{-1}(Y_p / X_p)$

www.nasa.gov at



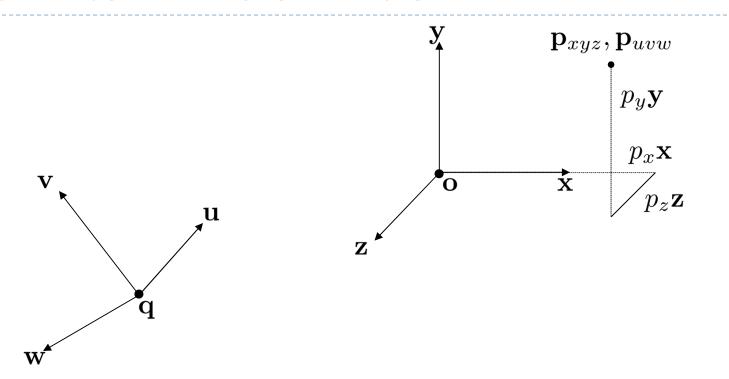
New **uvwq** coordinate system

Goal: Find coordinates of \mathbf{p}_{xyz} in new \mathbf{uvwq} coordinate system



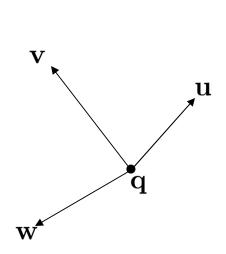
Express coordinates of xyzo reference frame with respect to uvwq reference frame:

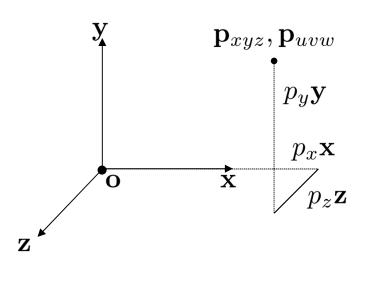
$$\mathbf{x} = \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} \qquad \mathbf{o} = \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix}$$



Point p expressed in new uvwq reference frame:

$$\mathbf{p}_{uvw} = p_x \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} + p_y \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} + p_z \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} + \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix}$$





$$\mathbf{p}_{uvw} = \begin{bmatrix} x_u & y_u & z_u & o_u \\ x_v & y_v & z_v & o_v \\ x_w & y_w & z_w & o_w \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} & \mathbf{o} \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

Inverse transformation

- ▶ Given point P_{uvw} w.r.t. reference frame uvwq:
 - ightharpoonup Coordinates P_{xyz} w.r.t. reference frame xyzo are calculated as:

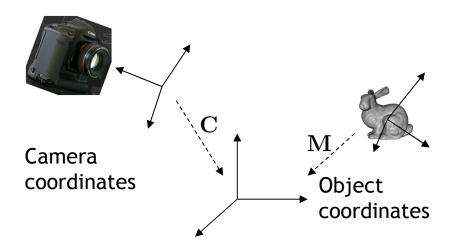
$$\mathbf{p}_{xyz} = \left[egin{array}{cccc} x_u & y_u & z_u & o_u \ x_v & y_v & z_v & o_v \ x_w & y_w & z_w & o_w \ 0 & 0 & 0 & 1 \end{array}
ight]^{-1} \left[egin{array}{c} p_u \ p_v \ p_w \ 1 \end{array}
ight]$$

Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Typical Coordinate Systems

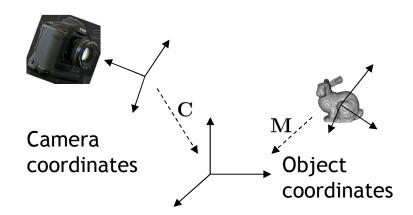
- In computer graphics, we typically use at least three coordinate systems:
 - World coordinate system
 - Camera coordinate system
 - Object coordinate system



World coordinates

World Coordinates

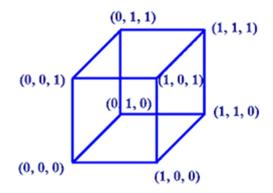
- ▶ Common reference frame for all objects in the scene
- No standard for coordinate system orientation
 - If there is a ground plane, usually x/y is horizontal and z points up (height)
 - Dtherwise, x/y is often screen plane, z points out of the screen



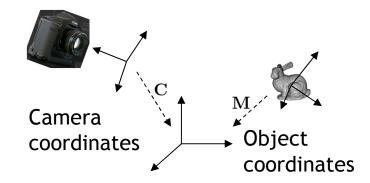
World coordinates

Object Coordinates

- Local coordinates in which points and other object geometry are given
- Often origin is in geometric center, on the base, or in a corner of the object
 - Depends on how object is generated or used.



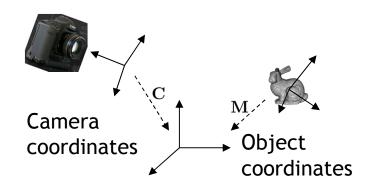
Source: http://motivate.maths.org



World coordinates

Object Transformation

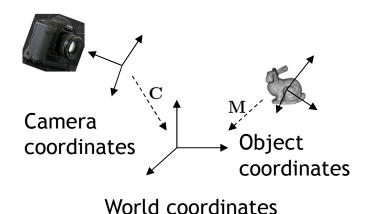
- The transformation from object to world coordinates is different for each object.
- Defines placement of object in scene.
- ▶ Given by "model matrix" (model-to-world transformation) **M**.



World coordinates

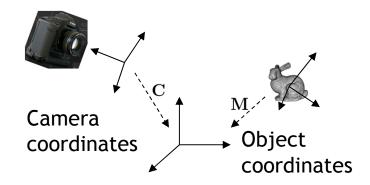
Camera Coordinate System

- Origin defines center of projection of camera
- x-y plane is parallel to image plane
- > z-axis is perpendicular to image plane



Camera Coordinate System

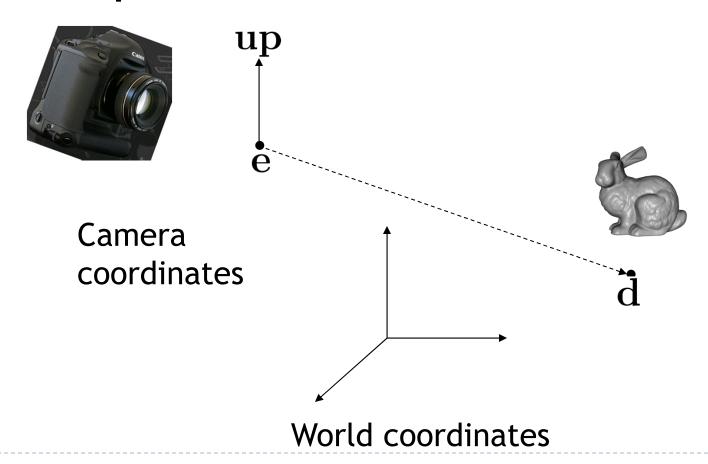
- ▶ The Camera Matrix defines the transformation from camera to world coordinates
 - Placement of camera in world



World coordinates

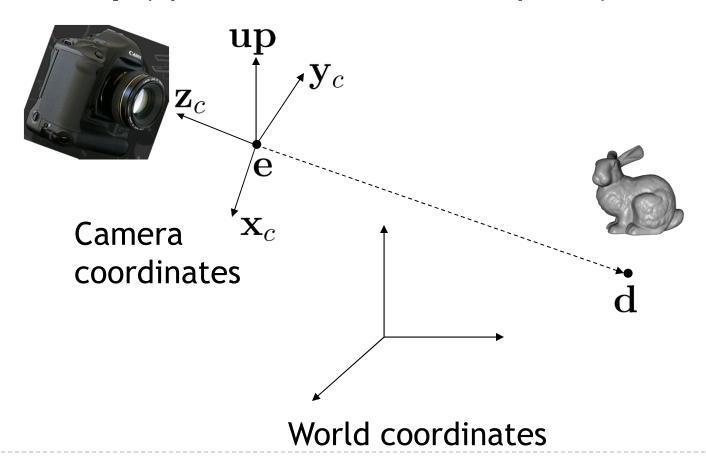
Camera Matrix

Construct from center of projection e, look at d, up-vector up:



Camera Matrix

Construct from center of projection **e**, look at **d**, upvector **up** (up in camera coordinate system):



Camera Matrix

z-axis

$$\mathbf{z}_C = \frac{\mathbf{e} - \mathbf{d}}{\|\mathbf{e} - \mathbf{d}\|}$$

x-axis

$$\boldsymbol{x}_C = \frac{\boldsymbol{u}\boldsymbol{p} \times \boldsymbol{z}_C}{\|\boldsymbol{u}\boldsymbol{p} \times \boldsymbol{z}_C\|}$$

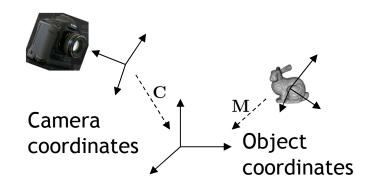
y-axis

$$y_C = z_C \times x_C = \frac{up}{\|up\|}$$

$$\boldsymbol{C} = \begin{bmatrix} \boldsymbol{x}_C & \boldsymbol{y}_C & \boldsymbol{z}_C & \boldsymbol{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transforming Object to Camera Coordinates

- Object to world coordinates: M
- Camera to world coordinates: C
- ▶ Point to transform: **p**
- ▶ Resulting transformation equation: p' = C⁻¹ M p



World coordinates

Tips for Notation

- Indicate coordinate systems with every point or matrix
 - Point: **p**_{object}
 - ► Matrix: M_{object→world}
- Resulting transformation equation:

$$\mathbf{p}_{camera} = (\mathbf{C}_{camera \rightarrow world})^{-1} \mathbf{M}_{object \rightarrow world} \mathbf{p}_{object}$$

- Helpful hint: in source code use consistent names
 - Point:p_object or p_obj or p_o
 - Matrix: object2world or obj2wld or o2w
- Resulting transformation equation:

```
wld2cam = inverse(cam2wld);
p_cam = p_obj * obj2wld * wld2cam;
```

Inverse of Camera Matrix

- ▶ How to calculate the inverse of the camera matrix \mathbb{C}^{-1} ?
- Generic matrix inversion is complex and computeintensive
- Affine transformation matrices can be inverted more easily
- Observation:
 - Camera matrix consists of translation and rotation: T x R
- ▶ Inverse of rotation: $\mathbf{R}^{-1} = \mathbf{R}^{\mathsf{T}}$
- Inverse of translation: $T(t)^{-1} = T(-t)$
- Inverse of camera matrix: $C^{-1} = R^{-1} \times T^{-1}$

Objects in Camera Coordinates

- We have things lined up the way we like them on screen
 - **x** to the right
 - y up
 - -z into the screen
 - Dbjects to look at are in front of us, i.e. have negative z values
- But objects are still in 3D
- Next step: project scene to 2D plane

Lecture Overview

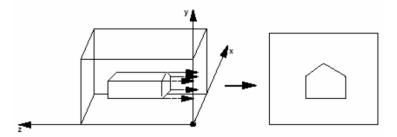
- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Projection

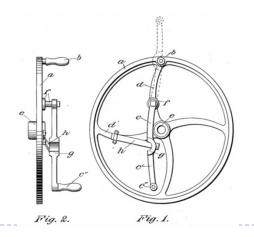
- Goal:
 Given 3D points (vertices) in camera coordinates,
 determine corresponding image coordinates
- Transforming 3D points into 2D is called Projection
- OpenGL supports two types of projection:
 - Orthographic Projection (=Parallel Projection)
 - Perspective Projection

Orthographic Projection

- ▶ Can be done by ignoring z-coordinate
 - Use camera space xy coordinates as image coordinates
- Project points to x-y plane along parallel lines

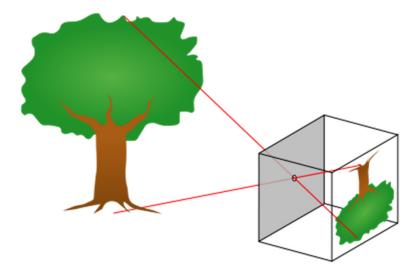


Often used in graphical illustrations, architecture, 3D modeling



Perspective Projection

- Most common for computer graphics
- Simplified model of human eye, or camera lens (pinhole camera)



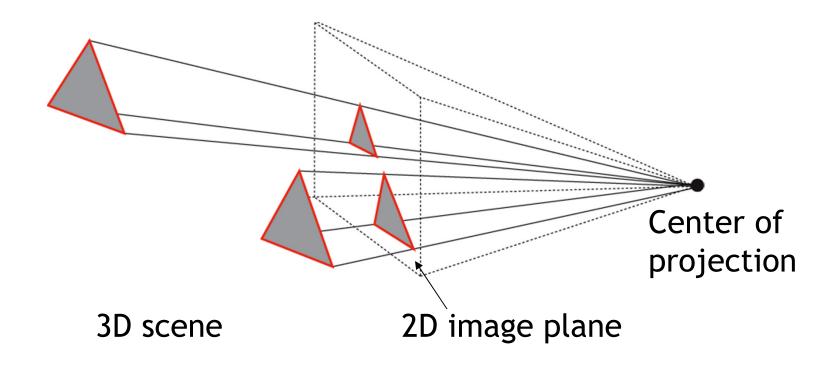
- ▶ Things farther away appear to be smaller
- Discovery attributed to Filippo Brunelleschi (Italian architect) in the early 1400's

Pinhole Camera

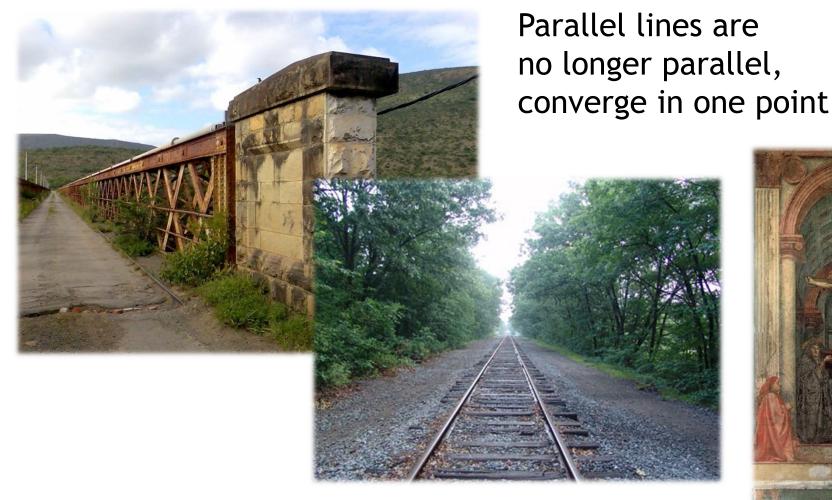
▶ San Diego, May 20th, 2012

Perspective Projection

Project along rays that converge in center of projection



Perspective Projection



Earliest example: La Trinitá (1427) by Masaccio

Video

- Professor Ravi Ramamoorthi on Perspective Projection
 - http://www.youtube.com/watch?v=VpNJbvZhNCQ