CSE 167: Introduction to Computer Graphics Lecture #3: Projection

Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

Announcements

- Project I due Friday September 30th, presentation in lab 260 starting
 I:30pm
 - Both executable and source code required for grading. We will ask questions about the code!
 - List your name on the whiteboard once you get to the lab. Homework will be graded in this order.
- Project 2 is due Friday October 7th
 - Introduction by Jorge on Mon at 3pm in lab 260
- ▶ TA office hours on Thursdays: competition with cse I 32 and another class
- Remaining questions about Tuesday's lecture?

Lecture Overview

- Rendering Pipeline
- Projections
- View Volumes, Clipping

Objects in camera coordinates

- We have things lined up the way we like them on screen
 - *x* to the right
 - y up
 - ► -z going into the screen
 - Dbjects to look at are in front of us, i.e. have negative z values
- But objects are still in 3D
- Problem: project them into 2D

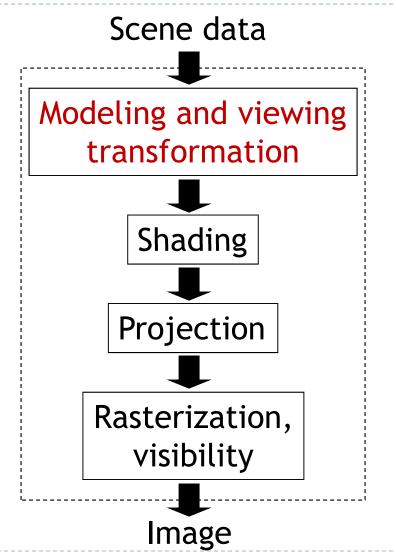
Scene data

- Hardware and software which draws 3D scenes on the screen
- Consists of several stages
 - Simplified version here
- Most operations performed by specialized hardware (GPU)
- Access to hardware through low-level 3D API (OpenGL, DirectX)
- All scene data flows through the pipeline at least once for each frame

Scene data Modeling and viewing transformation Shading Projection Rasterization, visibility **Image**

- Textures, lights, etc.
- Geometry
 - Vertices and how they are connected
 - Triangles, lines, points, triangle strips
 - Attributes such as color

- Specified in object coordinates
- Processed by the rendering pipeline one-by-one

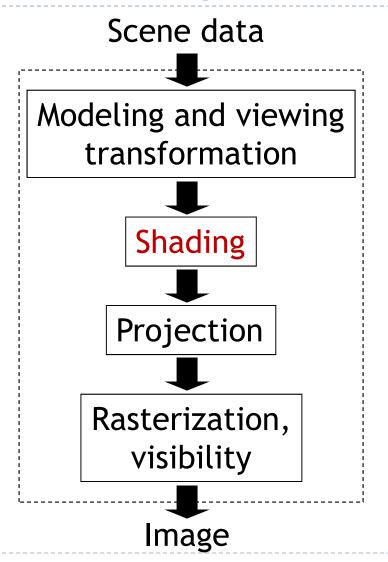


- Transform object to camera coordinates
- Specified by GL_MODELVIEW matrix in OpenGL
- User computes
 GL_MODELVIEW matrix
 as discussed

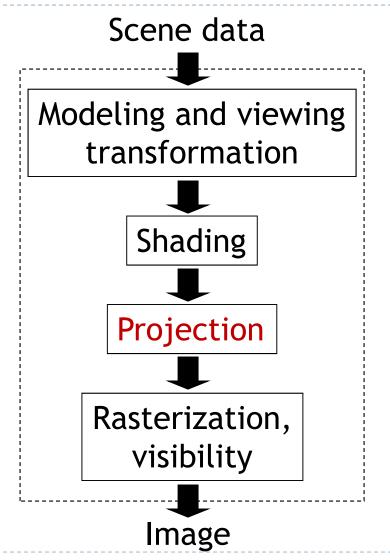
$$\mathbf{p}_{camera} = \mathbf{C}^{-1} \mathbf{M} \mathbf{p}_{object}$$

MODELVIEW

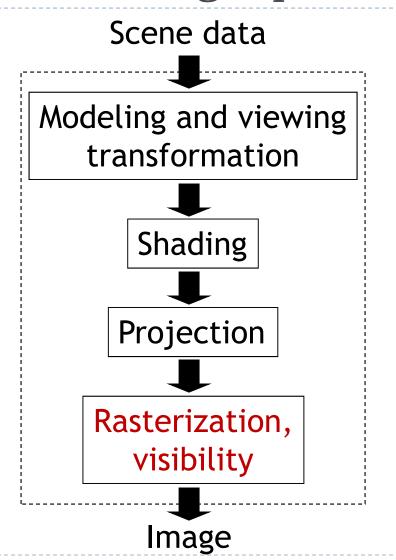
matrix



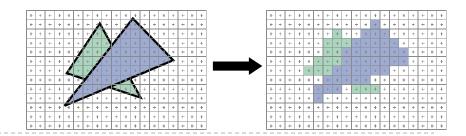
- Look up light sources
- Compute color for each vertex
- Covered later in the course

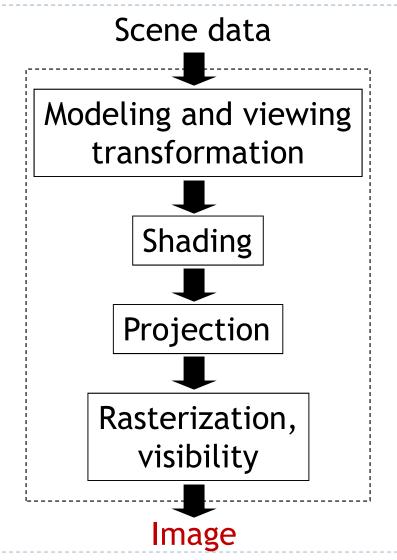


- Project 3D vertices to 2D image positions
- ▶ GL_PROJECTION matrix
- Covered in today's lecture



- Draw primitives (triangles, lines, etc.)
- Determine what is visible
- Covered in next lecture





Pixel colors

Rendering Engine

Scene data

Rendering pipeline

Image

- Additional software layer encapsulating low-level API
- Higher level functionality than OpenGL
- Platform independent
- Layered software architecture common in industry
 - Game engineshttp://en.wikipedia.org/wiki/Gameengine

Lecture Overview

- Rendering Pipeline
- Projections
- View Volumes, Clipping

Projections

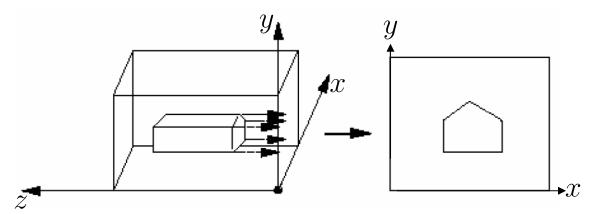
 Given 3D points (vertices) in camera coordinates, determine corresponding image coordinates

Orthographic Projection

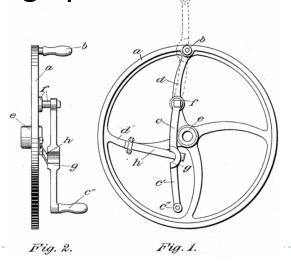
- a.k.a. Parallel Projection
- \blacktriangleright Done by ignoring z-coordinate
- Use camera space xy coordinates as image coordinates

Orthographic Projection

 \blacktriangleright Project points to x-y plane along parallel lines

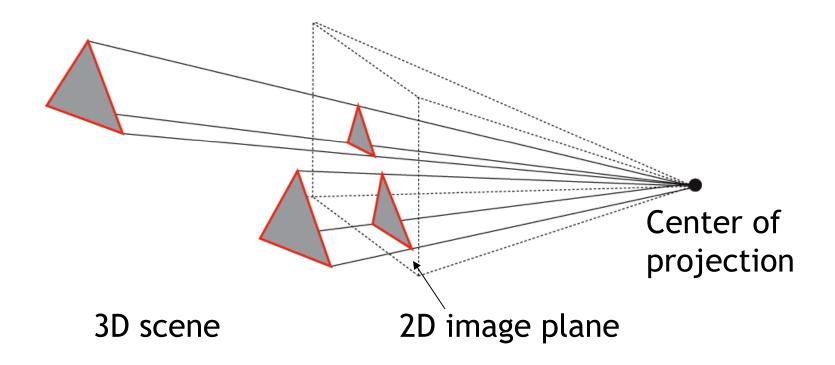


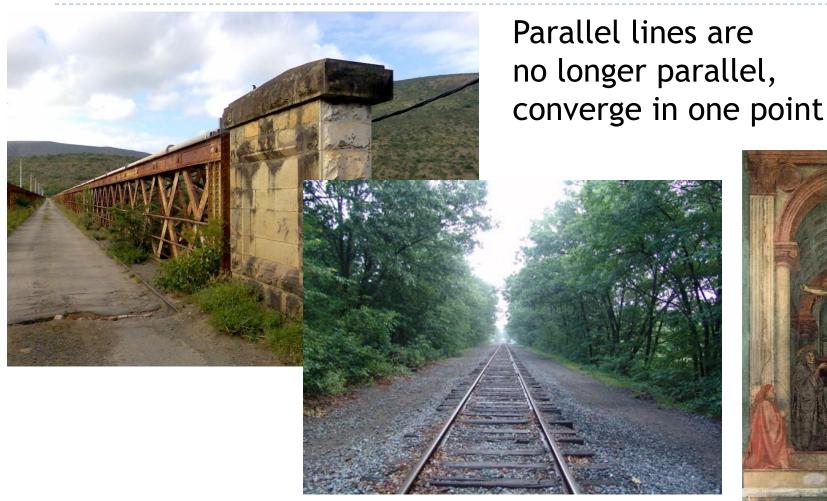
Used in graphical illustrations, architecture, 3D modeling

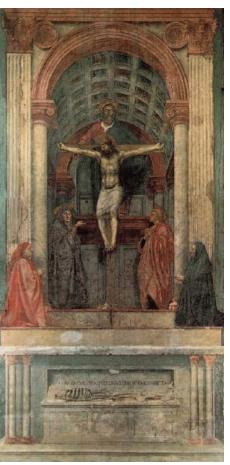


- Most common for computer graphics
- Simplified model of human eye, or camera lens (pinhole camera)
- ▶ Things farther away appear to be smaller
- Discovery attributed to Filippo Brunelleschi (Italian architect) in the early 1400's

Project along rays that converge in center of projection







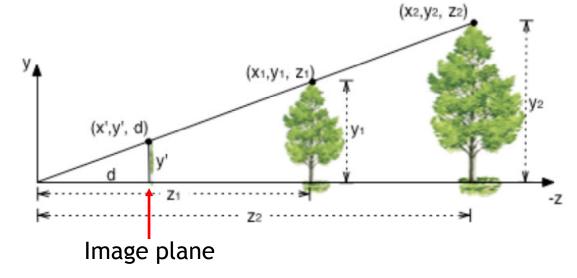
The math: simplified case

$$\frac{y'}{d} = \frac{y_1}{z_1}$$

$$y' = \frac{y_1 d}{z_1}$$

$$x' = \frac{x_1 d}{z_1}$$

$$z'=d$$



The math: simplified case

$$x' = \frac{x_1 d}{z_1}$$

$$y' = \frac{y_1 d}{z_1}$$

$$z' = d$$

$$y = \frac{y_1 d}{z_1}$$

$$y = \frac{y_1 d}{z_1}$$

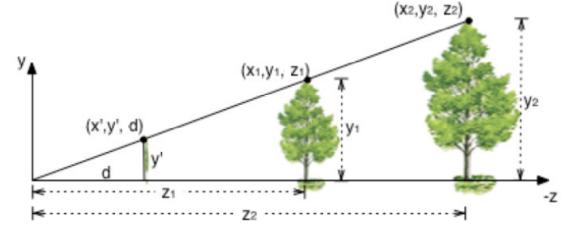
$$y = \frac{z_1}{z_1}$$

$$z = \frac{z_1}{z_1}$$

We can express this using homogeneous coordinates and 4x4 matrices

The math: simplified case

$$x' = \frac{x_1 d}{z_1}$$
$$y' = \frac{y_1 d}{z_1}$$



$$z' = d$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \longrightarrow \begin{bmatrix} xd/z \\ yd/z \\ d \end{bmatrix}$$

Projection matrix

Homogeneous division

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} xd/z \\ yd/z \\ d \\ 1 \end{bmatrix}$$

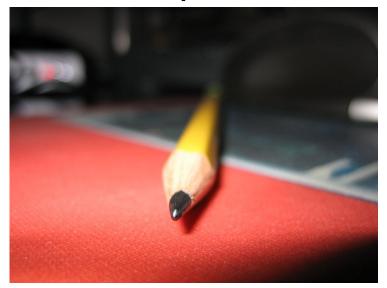
Projection matrix Homogeneous division

- Using projection matrix, homogeneous division seems more complicated than just multiplying all coordinates by d/z, so why do it?
- It will allow us to:
 - handle different types of projections in a unified way
 - define arbitrary view volumes
- Divide by w (perspective division, homogeneous division) after performing projection transform
 - Graphics hardware does this automatically

Photorealistic Rendering

- More than just perspective projection
- Some effects are too complex for hardware rendering
- For example: lens effects

Focus, depth of field



Fish-eye lens

Photorealistic Rendering

Chromatic Aberration

Motion Blur

Lecture Overview

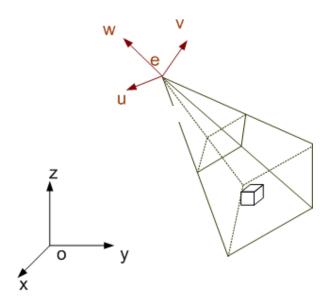
- Rendering Pipeline
- Projections
- View Volumes, Clipping

View Volumes

Define 3D volume seen by camera

Perspective view volume

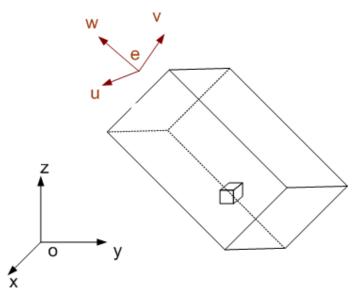
Camera coordinates



World coordinates

Orthographic view volume

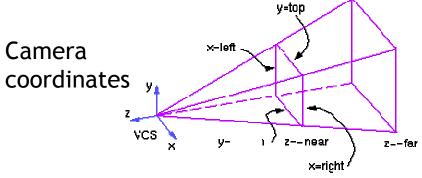
Camera coordinates



World coordinates

Perspective View Volume

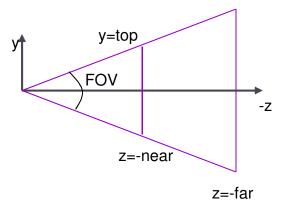
General view volume



- Defined by 6 parameters, in camera coordinates
 - Left, right, top, bottom boundaries
 - Near, far clipping planes
- Clipping planes to avoid numerical problems
 - Divide by zero
 - Low precision for distant objects
- Usually symmetric, i.e., left=-right, top=-bottom

Perspective View Volume

Symmetrical view volume



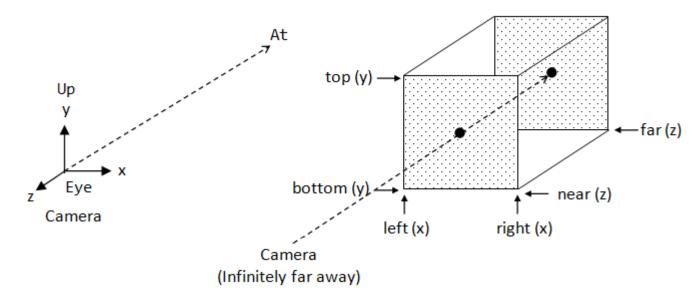
Only 4 parameters

- Vertical field of view (FOV)
- Image aspect ratio (width/height)
- Near, far clipping planes

aspect ratio=
$$\frac{right - left}{top - bottom} = \frac{right}{top}$$

$$\tan(FOV/2) = \frac{top}{near}$$

Orthographic View Volume



- Parameterized by 6 parameters
 - Right, left, top, bottom, near, far
- Or if symmetrical:
 - Width, height, near, far

Clipping

- Need to identify objects outside view volume
 - Avoid division by zero
 - Efficiency: don't draw objects outside view volume (view frustum culling)
- Performed in hardware
- Hardware always clips to the canonical view volume: cube [-1..1]x[-1..1]x[-1..1] centered at origin
- Need to transform desired view frustum to canonical view frustum