CSE 167: Introduction to Computer Graphics Lecture #5: Projection

Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

Announcements

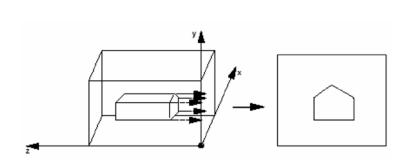
- Friday: homework I due at 2pm
 - Upload to TritonEd
 - Demonstrate in CSE basement labs

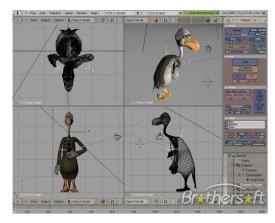
Topics

- Projection
- Visibility

Projection

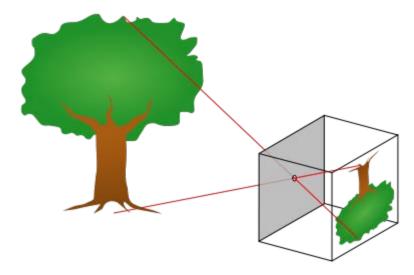
- Goal:
 Given 3D points (vertices) in camera coordinates,
 determine corresponding image coordinates
- Transforming 3D points into 2D is called Projection
- OpenGL supports two types of projection:
 - Orthographic Projection (=Parallel Projection)





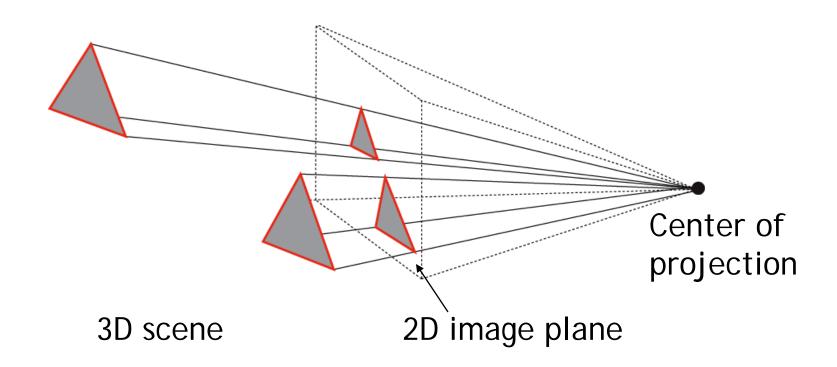
Perspective Projection: most commonly used

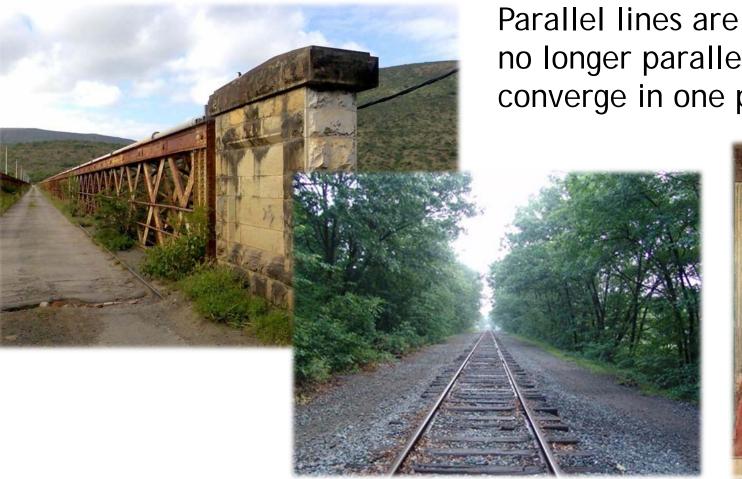
- Most common for computer graphics
- Simplified model of human eye, or camera lens (pinhole camera)



- ▶ Things farther away appear to be smaller
- Discovery attributed to Filippo Brunelleschi (Italian architect) in the early 1400's

Project along rays that converge in center of projection





no longer parallel, converge in one point

From law of ratios in similar triangles follows:

$$\frac{y'}{d} = \frac{y_1}{z_1} \Rightarrow y' = \frac{y_1 d}{z_1}$$
Similarly:
$$x' = \frac{x_1 d}{z_1}$$

$$\lim_{z \to z_1} \frac{y'}{z_1}$$

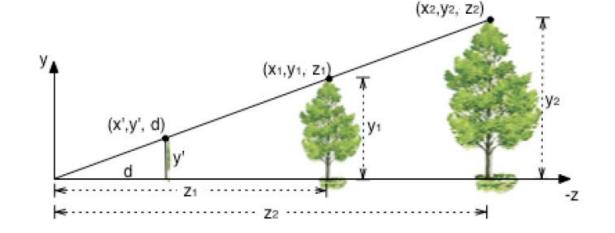
$$\lim_{z \to z_1} \frac{y'}{z_2}$$

$$\lim_{z \to z_1} \frac{y'}{z_2}$$

By definition: z' = d

 We can express this using homogeneous coordinates and 4x4 matrices as follows

$$x' = \frac{x_1 d}{z_1}$$
$$y' = \frac{y_1 d}{z_1}$$



$$z' = d$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ \end{bmatrix} \xrightarrow{b} \begin{bmatrix} xd/z \\ yd/z \\ d \\ \end{bmatrix}$$

Projection matrix

Homogeneous division

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} xd/z \\ yd/z \\ d \\ 1 \end{bmatrix}$$

Projection matrix P

- Using projection matrix, homogeneous division seems more complicated than just multiplying all coordinates by d/z, so why do it?
- It will allow us to:
 - Handle different types of projections in a unified way
 - Define arbitrary view volumes

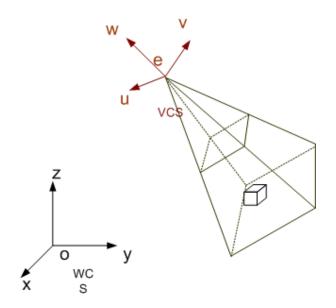
Topics

- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling

View Volume

View volume = 3D volume seen by camera

Camera coordinates



World coordinates

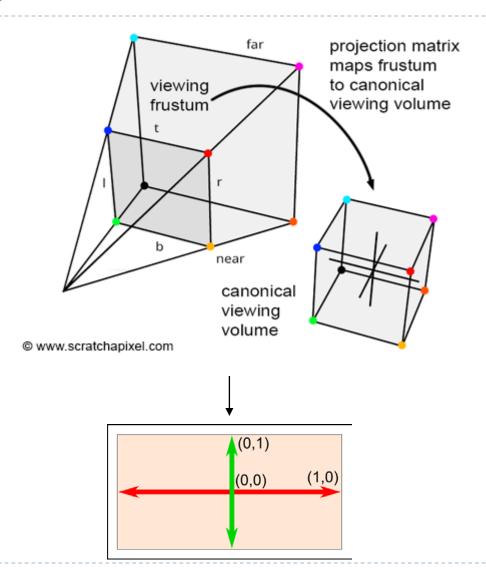
Projection Matrix

Camera coordinates

Canonical view volume

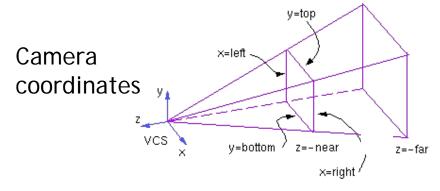
Viewport transformation

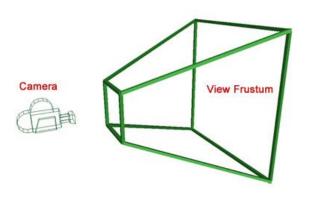
Image space (pixel coordinates)



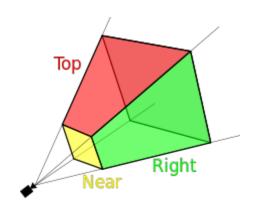
Perspective View Volume

General view volume



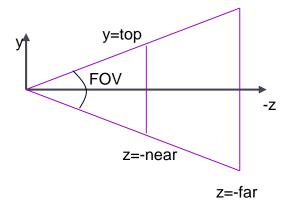


- Defined by 6 parameters, in camera coordinates
 - Left, right, top, bottom boundaries
 - Near, far clipping planes
- Clipping planes to avoid numerical problems
 - Divide by zero
 - Low precision for distant objects
- Usually symmetric, i.e., left=-right, top=-bottom



Perspective View Volume

Symmetrical view volume



Only 4 parameters

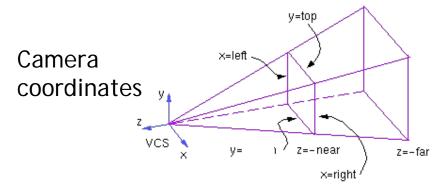
- Vertical field of view (FOV)
- Image aspect ratio (width/height)
- Near, far clipping planes

aspect ratio=
$$\frac{right - left}{top - bottom} = \frac{right}{top}$$

$$\tan(FOV/2) = \frac{top}{near}$$

Perspective Projection Matrix

General view frustum with 6 parameters



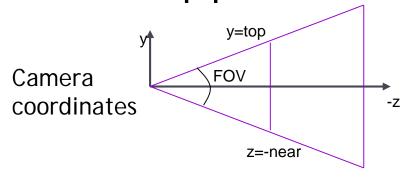
 $\mathbf{P}_{persp}(left, right, top, bottom, near, far) =$

$$\begin{bmatrix} \frac{2near}{right-left} & 0 & \frac{right+left}{right-left} & 0 \\ 0 & \frac{2near}{top-bottom} & \frac{top+bottom}{top-bottom} & 0 \\ 0 & 0 & \frac{-(far+near)}{far-near} & \frac{-2far\cdot near}{far-near} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

In OpenGL: glFrustum(left, right, bottom, top, near, far)

Perspective Projection Matrix

Symmetrical view frustum with field of view, aspect ratio, near and far clip planes



$$\mathbf{P}_{persp}(FOV, aspect, near, far) = \begin{bmatrix} \frac{1}{aspect \cdot \tan(FOV/2)} & 0 & 0 & 0 \\ 0 & \frac{1}{\tan(FOV/2)} & 0 & 0 \\ 0 & 0 & \frac{near + far}{near - far} & \frac{2 \cdot near \cdot far}{near - far} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

In OpenGL:

gluPerspective(fov, aspect, near, far)

Canonical View Volume

- Goal: create projection matrix so that
 - User defined view volume is transformed into canonical view volume: cube [-1,1]x[-1,1]x[-1,1]
 - Multiplying corner vertices of view volume by projection matrix and performing homogeneous divide yields corners of canonical view volume
- Perspective and orthographic projection are treated the same way
- Canonical view volume is last stage in which coordinates are in 3D
 - Next step is projection to 2D frame buffer

Viewport Transformation

- After applying projection matrix, scene points are in normalized viewing coordinates
 - Per definition within range [-1..1] x [-1..1] x [-1..1]
- Next is projection from 3D to 2D (not reversible)
- Normalized viewing coordinates can be mapped to image (=pixel=frame buffer) coordinates
 - Range depends on window (view port) size: [x0...x1] x [y0...y1]
- Scale and translation required:

$$\mathbf{D}(x_0, x_1, y_0, y_1) = \begin{bmatrix} (x_1 - x_0)/2 & 0 & 0 & (x_0 + x_1)/2 \\ 0 & (y_1 - y_0)/2 & 0 & (y_0 + y_1)/2 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Lecture Overview

- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling

$$\mathbf{p}' = \mathbf{DPC}^{-1}\mathbf{M}\mathbf{p}$$
Object space

- ▶ **M**: Object-to-world matrix
- ▶ **C**: camera matrix
- ▶ **P**: projection matrix
- **D**: viewport matrix

$$\mathbf{p}' = \mathbf{DPC}^{-1} \mathbf{M} \mathbf{p}$$
Object space
World space

- ▶ M: Object-to-world matrix
- ▶ **C**: camera matrix
- ▶ **P**: projection matrix
- **D**: viewport matrix

$$\mathbf{p}' = \mathbf{DP} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$$
Object space
World space
Camera space

- ▶ M: Object-to-world matrix
- ▶ **C**: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

$$\mathbf{p'} = \mathbf{D}\mathbf{P}\mathbf{C}^{-1}\mathbf{M}\mathbf{p}$$
Object space
World space
Camera space
Canonical view volume

- ▶ **M**: Object-to-world matrix
- C: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

Mapping a 3D point in object coordinates to pixel coordinates: $\mathbf{p}' = \mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$

DPC-IMp
Object space
World space
Camera space
Canonical view volume
Image space

M: Object-to-world matrix

C: camera matrix

▶ **P**: projection matrix

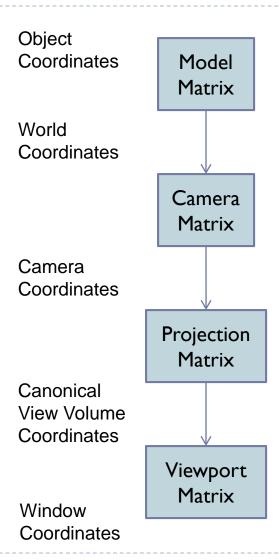
D: viewport matrix

$$\mathbf{p}' = \mathbf{DPC}^{-1}\mathbf{Mp}$$

$$\mathbf{p}' = \mathbf{DPC}^{-1}\mathbf{Mp}$$

$$\mathbf{p}' = \begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} \quad \text{Pixel coordinates:} \quad \frac{x'/w'}{y'/w'}$$

- M: Object-to-world matrix
- C: camera matrix
- **P**: projection matrix
- **D**: viewport matrix



Complete Vertex Transformation in OpenGL

OpenGL GL_MODELVIEW matrix
$$\mathbf{p'} = \mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$$
 OpenGL GL_PROJECTION matrix

- ▶ **M**: Object-to-world matrix
- ▶ **C**: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

Complete Vertex Transformation in OpenGL

▶ GL_MODELVIEW, C-¹M

- Defined by the programmer.
- Think of the ModelView matrix as where you stand with the camera and the direction you point it.

▶ GL_PROJECTION, **P**

- Utility routines to set it by specifying view volume: glFrustum(), gluPerspective(), glOrtho()
- Think of the projection matrix as describing the attributes of your camera, such as field of view, focal length, etc.

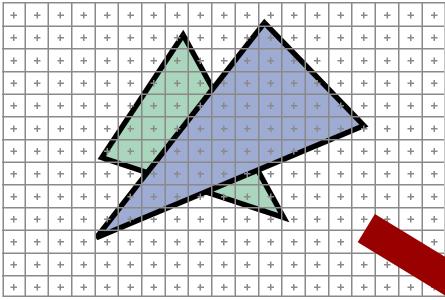
Viewport, D

- Specify implicitly via glViewport()
- No direct access with equivalent to GL_MODELVIEW or GL_PROJECTION

Topics

- Projection
- Visibility

Visibility

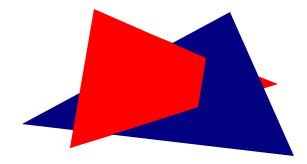


 At each pixel, we need to determine which triangle is visible

		4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
±_	. ±.	_±_	<u>.</u> ±.	_±_	_ ±	_±_	_ ±	±_	_ ±	_±_	_ ±	±_	_±_	±.	_±_	. ±.	_±_	_ +
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Painter's Algorithm

- Paint from back to front
- Need to sort geometry according to depth
- Every new pixel always paints over previous pixel in frame buffer
- May need to split triangles if they intersect



- Intuitive, but outdated algorithm created when memory was expensive
- Needed for translucent geometry even today

Z-Buffering

- Store z-value for each pixel
- Depth test
 - Initialize z-buffer with farthest z value
 - During rasterization, compare stored value to new value
 - Update pixel only if new value is smaller

```
setpixel(int x, int y, color c, float z)
if(z<zbuffer(x,y)) then
  zbuffer(x,y) = z
  color(x,y) = c</pre>
```

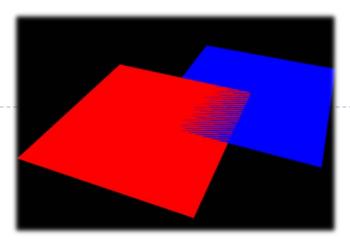
- z-buffer is dedicated memory reserved in GPU memory
- ▶ Depth test is performed by GPU → very fast

Z-Buffering in OpenGL

In OpenGL applications:

- Ask for a depth buffer when you create your GLFW window.
 - glfwOpenWindow(512, 512, 8, 8, 8, 0, 16, 0, GLFW_WINDOW)
- Place a call to glEnable(GL_DEPTH_TEST) in your program's initialization routine.
- Ensure that your zNear and zFar clipping planes are set correctly (glm::perspective(fovy, aspect, zNear, zFar)) and in a way that provides adequate depth buffer precision.
- ▶ Pass GL_DEPTH_BUFFER_BIT as a parameter to glClear.
- Note that the z buffer is non-linear: it uses smaller depth bins in the foreground, larger ones further from the camera.

Z-Buffer Fighting



- ▶ Problem: polygons which are close together don't get rendered correctly. Errors change with camera perspective → flicker
- Cause: differently colored fragments from different polygons are being rasterized to same pixel and depth → not clear which is in front of which

Solutions:

- move surfaces farther apart, so that fragments rasterize into different depth bins
- bring near and far planes closer together
- use a higher precision depth buffer. Note that OpenGL often defaults to
 16 bit even if your graphics card supports 24 bit or 32 bit depth buffers

Translucent Geometry

- Need to depth sort translucent geometry and render with Painter's Algorithm (back to front)
- Problem: incorrect blending with cyclically overlapping geometry

Solutions:

- Back to front rendering of translucent geometry (Painter's Algorithm), after rendering opaque geometry
 - Does not always work correctly: programmer has to weigh rendering correctness against computational effort
- Theoretically: need to store multiple depth and color values per pixel (not practical in real-time graphics)