
CSE 167:

Introduction to Computer Graphics

Lecture #16: Environment Mapping

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2015

Announcements

� First blog entry due tonight at midnight

� Final project due December 10th at 8am

� Presentations December 10th 8am-11am in CSE 1202

2

Midterm Statistics

3

Category Midterm 1 Midterm 2

Exams Submitted 98 85

Average Score 52.8 66.4

Median Score 54 68.5

Highest Score 80 80

Lowest Score 27.5 41.5

70-80 Points 7 20

60-70 Points 26 25

50-60 Points 30 14

40-50 Points 17 6

30-40 Points 15 0

20-30 Points 3 0

Visual Debugging

4

OpenGL error state: glGetError()
� OpenGL has an error state

� Use glGetError() to find location of error. It will clear the error flag.

� Then gluErrorString() to parse the error message

void printGLError(const char* msg)

{

const GLenum err = glGetError();

if(err != GL_NO_ERROR)

{

const char* str = (const char*)gluErrorString(err);

cerr << “OpenGL error: " << msg << ", " << str << endl;

}

}

5

Tips for Visual Debugging

� Collisions, view frustum culling:

� Show bounding boxes/spheres for all objects

� Problems with shading:

� Display normal vectors on vertices as line segments pointing in the
direction of the vector. Example: Normal Visualizer (pictured above).

� Or interpret surface normals as RGB colors by shifting x/y/z range from
-1..1 to 0..1.

� Display direction and other vectors:

� Display normal vectors as described above.

� Objects don’t get rendered:

� Find out if they won’t render or are just off screen by temporarily
overwriting GL_MODELVIEW and GL_PROJECTION matrices with
simpler ones, and/or zooming out by increasing the field of view angle.

6

Normal shading

Normal Visualizer

OpenGL Debugging Tools

� Overview with many links:

� https://www.opengl.org/wiki/Debugging_Tools

� Nvidia tools (Nsight and others):

� https://developer.nvidia.com/gameworks-tools-overview

7

Lecture Overview

Advanced Shader Effects

� Environment mapping

� Toon shading

8

More Realistic Illumination

� In the real world:
At each point in scene light arrives from all directions

� Not just from a few point light sources

� � Global Illumination is a solution, but computationally
expensive

� Environment Maps

� Store “omni-directional” illumination as images

� Each pixel corresponds to light from a certain direction

9

Capturing Environment Maps

� “360 degrees” panoramic image

� Instead of 360 degrees panoramic
image, take picture of mirror ball
(light probe)

Light Probes by Paul Debevec

http://www.debevec.org/Probes/

10

Environment Maps as Light Sources

Simplifying Assumption

� Assume light captured by environment map is emitted
from infinitely far away

� Environment map consists of directional light sources
� Value of environment map is defined for each direction,
independent of position in scene

� Approach uses same environment map at each point in
scene
�Approximation!

11

Applications for Environment Maps

� Use environment map as “light source”

Global illumination with

pre-computed radiance transfer

[Sloan et al. 2002]

Reflection mapping

[Terminator 2, 1991]

12

Cubic Environment Maps

� Store incident light on six faces
of a cube instead of on sphere

Spherical map Cube map
13

Cubic vs. Spherical Maps

� Advantages of cube maps:

� More even texel sample density causes less distortion, allowing
for lower resolution maps

� Easier to dynamically generate cube maps for real-time
simulated reflections

14

Bubble Demo

http://download.nvidia.com/downloads/nZone/demos/nvidia/Bubble.zip

15

Cubic Environment Maps

Cube map look-up

� Given: light direction (x,y,z)

� Largest coordinate component determines cube map face

� Dividing by magnitude of largest component yields
coordinates within face

� In GLSL:

� Use (x,y,z) direction as texture coordinates to samplerCube

16

Reflection Mapping

� Simulates mirror reflection

� Computes reflection vector at each pixel

� Use reflection vector to look up cube map

� Rendering cube map itself is optional (application dependent)

Reflection mapping
17

Reflection Mapping in GLSL

Application Setup

� Load and bind a cube environment map
glBindTexture(GL_TEXTURE_CUBE_MAP, …);

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X,…);

glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X,…);

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y,…);

…

glEnable(GL_TEXTURE_CUBE_MAP);

18

Reflection Mapping in GLSL

Vertex shader

� Compute viewing direction

� Reflection direction
� Use reflect function

� Pass reflection direction to fragment shader

Fragment shader

� Look up cube map using interpolated reflection
direction
varying float3 refl;

uniform samplerCube envMap;

textureCube(envMap, refl);

19

Environment Maps as Light Sources

� Covered so far: shading of a specular surface

� How do you compute shading of a diffuse surface?

20

Diffuse Irradiace Environment Map

� Given a scene with k directional lights, light directions d1..dk and intensities i1..ik,
illuminating a diffuse surface with normal n and color c

� Pixel intensity B is computed as:

� Cost of computing B proportional to number of texels in environment map!

� � Precomputation of diffuse reflection

� Observations:

� All surfaces with normal direction n will return the same value for the sum

� The sum is dependent on just the lights in the scene and the surface normal

� Precompute sum for any normal n and store result in a second environment map,
indexed by surface normal

� Second environment map is called diffuse irradiance environment map

� Allows to illuminate objects with arbitrarily complex lighting environments with
single texture lookup

∑
=

⋅=

kj

jj indcB
..1

),0max(

21

Diffuse Irradiace Environment Map

� Two cubic environment maps:

� Reflection map

� Diffuse map

� Diffuse shading vs. shading w/diffuse map

Image source: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter10.html

22

