
CSE 167:

Introduction to Computer Graphics

Lecture #7: Textures

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2015

Announcements

� Project 3 due tomorrow at 2pm

� Code submission on Ted

� Also try submitting to Classroom Github; we’ll use it for
projects 4-7 (instructions on Piazza)

� Midterm

� Monday: discussion

� Thursday: in class written exam, closed book

� Planning to have grades on Ted by Friday afternoon

� May cover all material through Tuesday’s lecture

2

Lecture Overview

� Types of Geometry Shading

� Texture Mapping

3

Types of Shading

� Per-triangle

� Per-vertex

� Per-pixel

4

Per-Triangle Shading

� A.k.a. flat shading

� Evaluate shading once per
triangle

� Advantage

� Fast

� Disadvantage

� Faceted appearance

5

Per-Vertex Shading

� Known as Gouraud shading
(Henri Gouraud, 1971)

� Interpolates vertex colors
across triangles

� Advantages
� Fast

� Smoother surface appearance
than with flat shading

� Disadvantage
� Problems with small highlights

6

Per-Pixel Shading

� A.k.a. Phong Interpolation (not to be
confused with Phong Illumination Model)

� Rasterizer interpolates normals (instead of
colors) across triangles

� Illumination model is evaluated at each pixel

� Simulates shading with normals of a curved
surface

� Advantage

� Higher quality than Gouraud shading

� Disadvantage

� Slow

7

Source: Penny Rheingans, UMBC

Gouraud vs. Per-Pixel Shading

� Gouraud shading has problems with highlights when
polygons are large

� More triangles improve the result, but reduce frame rate

Gouraud Per-Pixel

8

Lecture Overview

� Texture Mapping

� Overview

� Wrapping

� Texture coordinates

� Anti-aliasing

9

Large Triangles

Pros:

� Often sufficient for simple
geometry

� Fast to render

Cons:

� Per vertex colors look boring
and computer-generated

10

Texture Mapping

� Map textures (images) onto
surface polygons

� Same triangle count, much more
realistic appearance

11

Texture Mapping

� Goal: map locations in texture to
locations on 3D geometry

� Texture coordinate space

� Texture pixels (texels) have texture
coordinates (s,t)

� Convention

� Bottom left corner of texture is at
(s,t) = (0,0)

� Top right corner is at (s,t) = (1,1)

(1,1)

(0,0)
s

t

Texture coordinates

12

Texture Mapping

� Store 2D texture coordinates s,t with each triangle vertex

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
s

t

Texture coordinates

(0.65,0.75)

v1

(s,t) = (0.65,0.75)

Triangle in any space before projection

v0

(s,t) = (0.6,0.4)

v2

(s,t) = (0.4,0.45)

13

Texture Mapping

� Each point on triangle gets color from its corresponding
point in texture

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
s

t

(0.65,0.75)

v1

(s,t) = (0.65,0.75)

v0

(s,t) = (0.6,0.4)

v2

(s,t) = (0.4,0.45)

Texture coordinates
Triangle in any space before projection

14

Texture Mapping

Includes texture mapping

Frame-buffer access

(z-buffering)

Modeling and viewing

transformation

Shading

Projection

Rasterization

Primitives

Image

Fragment processing

15

Texture Look-Up

� Given interpolated texture coordinates (s, t) at current
pixel

� Closest four texels in texture space are at

(s0,t0), (s1,t0), (s0,t1), (s1,t1)

� How to compute pixel color?

16

t1

t

t0

s0 s s1

Nearest-Neighbor Interpolation

� Use color of closest texel

� Simple, but low quality and aliasing

17

t1

t

t0

s0 s s1

Bilinear Interpolation

1. Linear interpolation horizontally:

Ratio in s direction rs:

ctop = tex(s0,t1) (1-rs) + tex(s1,t1) rs
cbot = tex(s0, t0) (1-rs) + tex(s1,t0) rs

18

01

0

ss

ss
r

s
−

−

=

t1

t

t0

s0 s s1

ctop

cbot

2. Linear interpolation vertically

Ratio in t direction rt:

c = cbot (1-rt) + ctop rt

Bilinear Interpolation

19

01

0

tt

tt
r
t

−

−

=

t1

t

t0

s0 s s1

ctop

cbot

c

Texture Filtering in OpenGL

� GL_NEAREST: Nearest-Neighbor interpolation

� GL_LINEAR: Bilinear interpolation

� Example:
� glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

� glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

20

Source: https://open.gl/textures

Lecture Overview

� Texture Mapping

� Wrapping

� Texture coordinates

� Anti-aliasing

21

Wrap Modes

� Texture image extends from [0,0] to [1,1] in texture
space

� What if (s,t) texture coordinates are beyond that range?

� �Texture wrap modes

22

Texture Space

(0,0)

(1,1)

Repeat

� Repeat the texture

� Creates discontinuities at edges

� unless texture is designed to line up

23

s

t

Seamless brick wall texture

(by Christopher Revoir)

s

t

Texture Space

(0,0)

(1,1)

Clamp

� Use edge value everywhere outside data range [0..1]

� Or use specified border color outside of range [0..1]

24

Wrap Modes in OpenGL

� Default:
� glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

� glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

� Options for wrap mode:

� GL_REPEAT

� GL_MIRRORED_REPEAT

� GL_CLAMP_TO_EDGE: repeats last pixel in the texture

� GL_CLAMP_TO_BORDER: requires border color to be set

25
Source: https://open.gl/textures

Lecture Overview

� Texture Mapping

� Wrapping

� Texture coordinates

� Anti-aliasing

26

Texture Coordinates

What if texture extends across multiple polygons?

���� Surface parameterization

� Mapping between 3D positions on surface and 2D texture
coordinates

� Defined by texture coordinates of triangle vertices

� Options for mapping:

� Parametric

� Orthographic

� Projective

� Spherical

� Cylindrical

� Skin

27

Cylindrical Mapping

� Similar to spherical mapping, but with cylindrical coordinates

28

Spherical Mapping

� Use spherical coordinates

� “Shrink-wrap” sphere to object

29

Texture map Mapping result

Orthographic Mapping

� Use linear transformation of object’s xyz coordinates

� Example:

30



























=









w

z

y

x

t

s

0010

0001

xyz in object space xyz in camera space

Parametric Mapping

� Surface given by parametric functions

� Very common in CAD

� Clamp (u,v) parameters to [0..1] and use as texture
coordinates (s,t)

31

Lecture Overview

� Texture Mapping

� Wrapping

� Texture coordinates

� Anti-aliasing

32

Aliasing

� What could cause this aliasing effect?

33

Aliasing

Sufficiently

sampled,

no aliasing

Insufficiently

sampled,

aliasing

High frequencies in the input data can appear as

lower frequencies in the sampled signal

34

Image: Robert L. Cook

Antialiasing: Intuition

� Pixel may cover large area on triangle in camera space
� Corresponds to many texels in texture space
� Need to compute average

Texture spaceCamera spaceImage plane

Pixel area

Texels

35

Lecture Overview

� Texture Mapping

� Mip Mapping

36

Antialiasing Using Mip-Maps

� Averaging over texels is expensive

� Many texels as objects get smaller

� Large memory access and compuation cost

� Precompute filtered (averaged) textures

� Mip-maps

� Practical solution to aliasing problem

� Fast and simple

� Available in OpenGL, implemented in GPUs

� Reasonable quality

37

Mipmaps

� MIP stands for multum in parvo = “much in little” (Williams
1983)

Before rendering

� Pre-compute and store down scaled versions of textures

� Reduce resolution by factors of two successively

� Use high quality filtering (averaging) scheme

� Increases memory cost by 1/3

� 1/3 = ¼+1/16+1/64+…

� Width and height of texture should be powers of two (non-
power of two supported since OpenGL 2.0)

38

Mipmaps

� Example: resolutions 512x512, 256x256, 128x128, 64x64,
32x32 pixels

“multum in parvo”
Level 0

Level 1

2

3
4

39

Mipmaps

� One texel in level 4 is the average of 44=256 texels in
level 0

“multum in parvo”
Level 0

Level 1

2

3
4

40

Mipmaps

Level 0 Level 1 Level 2

Level 3 Level 441

Rendering With Mipmaps

� “Mipmapping”

� Interpolate texture coordinates of each pixel as without
mipmapping

� Compute approximate size of pixel in texture space

� Look up color in nearest mipmap
� E.g., if pixel corresponds to 10x10 texels use mipmap level 3

� Use nearest neighbor or bilinear interpolation as before

42

Mipmapping

Texture spaceCamera spaceImage plane

Pixel area

Texels

Mip-map level 0

Mip-map level 1

Mip-map level 2

Mip-map level 343

Nearest Mipmap, Nearest Neighbor

� Visible transition between mipmap levels

44

Nearest Mipmap, Bilinear

� Visible transition between mipmap levels

45

Trilinear Mipmapping

� Use two nearest mipmap levels

� E.g., if pixel corresponds to 10x10 texels, use mipmap levels 3
(8x8) and 4 (16x16)

� 2-Step approach:

� Step 1: perform bilinear interpolation in both mip-maps

� Step 2: linearly interpolate between the results

� Requires access to 8 texels for each pixel

� Supported by hardware without performance penalty

46

More Info

� Mipmapping tutorial w/source code:
� http://www.videotutorialsrock.com/opengl_tutorial/mipmapping/text.php

47

