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Announcements

� Project 3 due tomorrow at 2pm

� Code submission on Ted

� Also try submitting to Classroom Github; we’ll use it for 
projects 4-7 (instructions on Piazza)

� Midterm

� Monday: discussion

� Thursday: in class written exam, closed book

� Planning to have grades on Ted by Friday afternoon

� May cover all material through Tuesday’s lecture
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Lecture Overview

� Types of Geometry Shading

� Texture Mapping
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Types of Shading

� Per-triangle

� Per-vertex

� Per-pixel
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Per-Triangle Shading

� A.k.a. flat shading

� Evaluate shading once per 
triangle

� Advantage

� Fast

� Disadvantage

� Faceted appearance
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Per-Vertex Shading

� Known as Gouraud shading 
(Henri Gouraud, 1971)

� Interpolates vertex colors 
across triangles

� Advantages
� Fast

� Smoother surface appearance 
than with flat shading

� Disadvantage
� Problems with small highlights
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Per-Pixel Shading

� A.k.a. Phong Interpolation (not to be 
confused with Phong Illumination Model)

� Rasterizer interpolates normals (instead of 
colors) across triangles

� Illumination model is evaluated at each pixel

� Simulates shading with normals of a curved 
surface

� Advantage

� Higher quality than Gouraud shading

� Disadvantage

� Slow
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Gouraud vs. Per-Pixel Shading

� Gouraud shading has problems with highlights when 
polygons are large

� More triangles improve the result, but reduce frame rate

Gouraud Per-Pixel
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Lecture Overview

� Texture Mapping

� Overview

� Wrapping

� Texture coordinates

� Anti-aliasing
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Large Triangles

Pros:

� Often sufficient for simple 
geometry

� Fast to render

Cons:

� Per vertex colors look boring 
and computer-generated
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Texture Mapping

� Map textures (images) onto 
surface polygons

� Same triangle count, much more 
realistic appearance
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Texture Mapping

� Goal: map locations in texture to 
locations on 3D geometry

� Texture coordinate space

� Texture pixels (texels) have texture 
coordinates (s,t)

� Convention

� Bottom left corner of texture is at
(s,t) = (0,0)

� Top right corner is at (s,t) = (1,1)

(1,1)

(0,0)
s

t

Texture coordinates
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Texture Mapping

� Store 2D texture coordinates s,t with each triangle vertex

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
s

t

Texture coordinates

(0.65,0.75)

v1

(s,t) = (0.65,0.75) 

Triangle in any space before projection

v0

(s,t) = (0.6,0.4) 

v2

(s,t) = (0.4,0.45) 
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Texture Mapping

� Each point on triangle gets color from its corresponding 
point in texture

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
s

t

(0.65,0.75)

v1

(s,t) = (0.65,0.75) 

v0

(s,t) = (0.6,0.4) 

v2

(s,t) = (0.4,0.45) 

Texture coordinates
Triangle in any space before projection
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Texture Mapping

Includes texture mapping

Frame-buffer access

(z-buffering)

Modeling and viewing

transformation

Shading

Projection

Rasterization

Primitives

Image

Fragment processing
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Texture Look-Up

� Given interpolated texture coordinates (s, t) at current 
pixel

� Closest four texels in texture space are at

(s0,t0), (s1,t0), (s0,t1), (s1,t1)

� How to compute pixel color?
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Nearest-Neighbor Interpolation

� Use color of closest texel

� Simple, but low quality and aliasing
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Bilinear Interpolation

1. Linear interpolation horizontally:

Ratio in s direction rs:

ctop = tex(s0,t1) (1-rs) + tex(s1,t1) rs
cbot = tex(s0, t0) (1-rs) + tex(s1,t0) rs
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2. Linear interpolation vertically

Ratio in t direction rt:

c = cbot (1-rt) + ctop rt

Bilinear Interpolation
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Texture Filtering in OpenGL

� GL_NEAREST: Nearest-Neighbor interpolation

� GL_LINEAR: Bilinear interpolation

� Example:
� glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); 

� glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
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Source: https://open.gl/textures



Lecture Overview

� Texture Mapping

� Wrapping

� Texture coordinates

� Anti-aliasing
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Wrap Modes

� Texture image extends from [0,0] to [1,1] in texture 
space

� What if (s,t) texture coordinates are beyond that range?

� �Texture wrap modes
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Texture Space

(0,0)

(1,1)

Repeat

� Repeat the texture

� Creates discontinuities at edges 

� unless texture is designed to line up
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Seamless brick wall texture 

(by Christopher Revoir)
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t

Texture Space

(0,0)

(1,1)

Clamp

� Use edge value everywhere outside data range [0..1]

� Or use specified border color outside of range [0..1]
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Wrap Modes in OpenGL

� Default:
� glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT ); 

� glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );

� Options for wrap mode:

� GL_REPEAT

� GL_MIRRORED_REPEAT

� GL_CLAMP_TO_EDGE: repeats last pixel in the texture

� GL_CLAMP_TO_BORDER: requires border color to be set
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Lecture Overview

� Texture Mapping 

� Wrapping

� Texture coordinates

� Anti-aliasing
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Texture Coordinates

What if texture extends across multiple polygons?

���� Surface parameterization

� Mapping between 3D positions on surface and 2D texture 
coordinates

� Defined by texture coordinates of triangle vertices

� Options for mapping:

� Parametric

� Orthographic

� Projective

� Spherical

� Cylindrical

� Skin
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Cylindrical Mapping

� Similar to spherical mapping, but with cylindrical coordinates
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Spherical Mapping

� Use spherical coordinates

� “Shrink-wrap” sphere to object
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Texture map Mapping result



Orthographic Mapping

� Use linear transformation of object’s xyz coordinates

� Example:
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Parametric Mapping

� Surface given by parametric functions

� Very common in CAD

� Clamp (u,v) parameters to [0..1] and use as texture 
coordinates (s,t)
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Lecture Overview

� Texture Mapping

� Wrapping

� Texture coordinates

� Anti-aliasing
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Aliasing

� What could cause this aliasing effect?
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Aliasing

Sufficiently 

sampled,

no aliasing

Insufficiently 

sampled,

aliasing

High frequencies in the input data can appear as 

lower frequencies in the sampled signal
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Antialiasing: Intuition

� Pixel may cover large area on triangle in camera space
� Corresponds to many texels in texture space
� Need to compute average

Texture spaceCamera spaceImage plane

Pixel area

Texels
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Lecture Overview

� Texture Mapping

� Mip Mapping
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Antialiasing Using Mip-Maps

� Averaging over texels is expensive

� Many texels as objects get smaller

� Large memory access and compuation cost

� Precompute filtered (averaged) textures

� Mip-maps

� Practical solution to aliasing problem

� Fast and simple

� Available in OpenGL, implemented in GPUs 

� Reasonable quality
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Mipmaps

� MIP stands for multum in parvo = “much in little” (Williams 
1983)

Before rendering

� Pre-compute and store down scaled versions of textures

� Reduce resolution by factors of two successively

� Use high quality filtering (averaging) scheme

� Increases memory cost by 1/3

� 1/3 = ¼+1/16+1/64+…

� Width and height of texture should be powers of two (non-
power of two supported since OpenGL 2.0)
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Mipmaps

� Example: resolutions 512x512, 256x256, 128x128, 64x64, 
32x32 pixels

“multum in parvo”
Level 0

Level 1

2

3
4
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Mipmaps

� One texel in level 4 is the average of 44=256 texels in 
level 0

“multum in parvo”
Level 0

Level 1

2

3
4
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Mipmaps

Level 0 Level 1 Level 2

Level 3 Level 441



Rendering With Mipmaps

� “Mipmapping”

� Interpolate texture coordinates of each pixel as without 
mipmapping

� Compute approximate size of pixel in texture space

� Look up color in nearest mipmap
� E.g., if pixel corresponds to 10x10 texels use mipmap level 3

� Use nearest neighbor or bilinear interpolation as before 
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Mipmapping

Texture spaceCamera spaceImage plane

Pixel area

Texels

Mip-map level 0

Mip-map level 1

Mip-map level 2

Mip-map level 343



Nearest Mipmap, Nearest Neighbor

� Visible transition between mipmap levels
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Nearest Mipmap, Bilinear

� Visible transition between mipmap levels
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Trilinear Mipmapping

� Use two nearest mipmap levels

� E.g., if pixel corresponds to 10x10 texels, use mipmap levels 3 
(8x8) and 4 (16x16)

� 2-Step approach:

� Step 1: perform bilinear interpolation in both mip-maps

� Step 2: linearly interpolate between the results

� Requires access to 8 texels for each pixel

� Supported by hardware without performance penalty
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More Info

� Mipmapping tutorial w/source code:
� http://www.videotutorialsrock.com/opengl_tutorial/mipmapping/text.php
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