
CSE 190
VR Technologies

Spring 2021

Guowei Yang

Discussion 4

ANNOUNCEMENTS

● Homework 2 Released

○ Due Sunday (5/2)

○ VR Headset Required

○ Expect some minor updates on the specs page

● SAVE OFTEN

AGENDA

● Setting up Unity & Oculus Quest 2 for VR Support

● Build Virtual 3D Scene

SETTING UP UNITY &
OCULUS QUEST

Setting Up Unity & Oculus Quest

● A little bit laborious, make sure follow all steps

● Ingredients

○ System: macOS/Windows 10/Linux

○ Unity ver. 2020.3.5f1

○ VR Headset (this discussion is mainly focused on

Oculus Quest 2 development)

○ Cross-Platform:

https://developer.oculus.com/documentation/unity/

unity-cross-platform-dev/

+

https://developer.oculus.com/documentation/unity/unity-cross-platform-dev/
https://developer.oculus.com/documentation/unity/unity-cross-platform-dev/

● Install Latest Version of Unity, Android SDK and JDK via Unity Hub

● Oculus Quest 2’s OS is Android-Based

Setting Up - Install SDKs

Unity Hub Install New Components

Setting Up - Install SDKs

Setting Up - Create Unity Project for VR

Setting Up - Enable Developer Mode for VR

Setting Up - Unity Install Oculus Integration

● Oculus Integration: SDK for Unity provides

support to develop Oculus apps in Unity

○ Handles headset tracking, controller

tracking and so much more

● Installed from Unity Assets Store:

https://assetstore.unity.com

Version 27

● Import to your newly created project

● SAVE OFTEN

https://developer.oculus.com/downloads/package/unity-integration/

https://assetstore.unity.com

Setting Up - Unity Install Oculus Integration

Select all the components and import to your project

Setting Up - Configure Build Settings

● File -> Build Settings -> Run Device

● Select your Oculus Quest (or other VR)
○ Make sure you installed Android SDK and JDK prior this

step, otherwise Unity will complain it cannot find the SDKs

● SAVE OFTEN

Setting Up - Configure Build Settings
● Select the correct graphics API

By default, the options here are Vulkan and

OpenGL, make sure you drag OpenGL to the top (if

Vulkan is present)

Setting Up - Configure Build Settings
● Enable Oculus Plug-in

● Black screen if missed this step

Setting Up - Test
● All those scenes should be able to be compiled and run on your headset

● If you encounter black screen issue, make sure to check XR Plugin Management is

checked for Oculus

● SAVE OFTEN

Setup Complete!

BUILD VIRTUAL
3D SCENE

Build Virtual 3D Scene

● The Oculus Integration package adds scripts, prefabs, samples,

and other resources to supplement Unity's built-in support.

● The package includes an interface for controlling VR camera

behavior, a first-person control prefab, a unified input API for

controllers, rendering features, debugging tools, and more

● SAVE OFTEN

Oculus Integration (OI) Components
● OVRCameraRig

○ Prefab, provides the transform object to represent the Oculus tracking space.
○ Obtain headset physical poses, apply the value to the virtual camera

● OVRPlayerController
○ Contains a camera rig and a local avatar

● OVRHandPrefab
○ Enables hand tracking in Oculus Quest, can control user interface with bare hands

● LocalAvatar
○ Prefab, “you” in the virtual world, can see your own hands in game

Select necessary components and add it to the scene hierarchy

Oculus Integration (OI) Components
● Use the search bar to find necessary components needed for the project

Build Virtual 3D Scene - Skybox
● A Skybox is a 6-sided cube that is drawn behind all graphics in the game.
● Used as 360 degree background
● Create new Material Asset -> Skybox

Build Virtual 3D Scene - Scene Switch

● Unity provides mechanisms for switching scenes in script
● Suitable for this project as you are asked to create several virtual scenes

for measurement
● Procedure:

○ Have multiple scenes readily available
○ Make a GameObject to be the trigger for the scene switch
○ Attach a C# script to the object
○ using UnityEngine.SceneManagement
○ SceneManager.LoadScene(sceneName);

● Add all the scenes to the build phase

Useful APIs
: API Package that provides raw input from the tracked controllers

Controller Tracking: OVRInput

Following APIs provides the position and rotation of the controllers in tracking space

● OVRInput.GetLocalControllerPosition(OVRInput.Controller controllerType)

● GetLocalControllerRotation (OVRInput.Controller controllerType)

https://developer.oculus.com/reference/unity/v27/class_o_v_r_input

Headset Tracking: OVRCameraRig

● OVRCameraRig overCameraRig; //Obtain this using GetComponent
var position = overCameraRig.centerEyeAnchor.position;

● centerEye, leftEye, rightEye for different purposes

https://developer.oculus.com/reference/unity/v27/class_o_v_r_camera_rig

https://developer.oculus.com/reference/unity/v27/class_o_v_r_input/#a5c86f9052a9cbb0b73779ff5704d60a8
https://developer.oculus.com/reference/unity/v27/class_o_v_r_input#ae2f486b9046928c9e82bf8cbc68054e6
https://developer.oculus.com/reference/unity/v27/class_o_v_r_input/#a5c86f9052a9cbb0b73779ff5704d60a8
https://developer.oculus.com/reference/unity/v27/class_o_v_r_input
https://developer.oculus.com/reference/unity/v27/class_o_v_r_camera_rig

GOOD LUCK!

QUESTIONS?

