CSE 167: Introduction to Computer Graphics Lecture #18: Bump Mapping

> Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2019

Announcements

- No discussion on Monday
 - But TA and tutor hours in computer labs as usual
- Instructor's office hour as usual Tuesday I-2pm
- Blog entry #3 due next Wednesday night
- Final project due Thursday at 3pm:
 - Upload your source code to Canvas (one person per team)
 - Link your video to the Youtube playlist
 - Video screening in CSE conference room 1242
 - Project grading in basement labs in two shifts:
 - 4-5pm and 5-6pm
 - Shift assignments to be announced on Monday
- Final project grades to be posted on Canvas next Friday afternoon

Bump Mapping with Normal Maps

Bump Mapping

- Many textures are the result of small perturbations in the surface geometry
- Modeling these changes would result in an explosion in the number of geometric primitives.
- Bump mapping attempts to alter the lighting across a polygon to provide the illusion of texture.

[This chapter includes slides by Roger Crawfis]

Bump Mapping Example

Crawfis 1991

Surface Shading

• Consider the lighting for a modeled surface.

Surface Shading

• We can model this as deviations from some base surface.

The question
 is then how
 these deviations
 change the lighting.

Bump Mapping

Bump Mapping with Normal Maps

Texture and normal maps

Just texture mapped

Notice: The geometry is unchanged. There's the same number of vertices and triangles. This effect is entirely from the normal map.

Normal Maps

Diffuse Color Texture Map

Each pixel represents a normal vector relative to the surface at that point. - I to I range is mapped to 0 to I for the texture so normals become colors. → Inverse of Normal Coloring

Normal Map Operation

For each pixel, determine the normal from a texture image. Use that to compute the color.

What's Missing?

- There are no bumps on the silhouette of a bump or normal-mapped object
- \rightarrow Displacement Mapping can model that

Wrapping it up

Computer Graphics and Related Courses in CSE Department

- CSE 167: Computer Graphics (Fall and Winter)
- CSE 168: Computer Graphics II: Rendering (Ramamoorthi in Winter)
- CSE 169: Computer Animation (Spring?)
- CSE 190:Virtual Reality Technologies (Schulze in Spring)
- CSE 165: 3D User Interfaces (Schulze, not in 2020)
- CSE 152: Intro to Computer Vision (Fall and Winter)
- CSE 166: Image Processing (when?)
- CSE 170: Interaction Design (Klemmer in Winter)

Computer Graphics: State of The Art

- ACM SIGGRAPH Los Angeles 2019 Technical Papers Preview (3'16)
 - https://www.youtube.com/watch?v=EhDr3Rs5fTU
- ► GDC 2019 Unity Features Reel (3'13)
 - https://www.youtube.com/watch?v=DCq0cndrYDQ
- SIGGRAPH 2019 Computer Animation Festival: Electronic Theater (1'32)
 - https://www.youtube.com/watch?v=UoosuGaBsbs&list=PL7wOdnrlw7u KyART_MfPL6Ur4BHdYcNW6&index=2

Good luck with your final projects!

