CSE 165: 3D User Interaction

Lecture #10: Wayfinding

Announcements

- Homework Assignment #2 due tomorrow at 2pm
 - Grading in VR lab B210
 - Even hour teams: grading starts at 2pm
 - Odd hour teams: grading starts at 2:30pm
 - Will be grading until 3pm or later if needed
- Monday 7pm: Homework discussion for assignment #3
- Looking for students for AR project

Navigation

Wayfinding – Cognitive Component Travel – Motor Component

Wayfinding

- Cognitive process of defining a path through an environment
 - use and acquire spatial knowledge
 - aided by natural and artificial cues
- Common activity in our daily lives
- Often unconscious activity (except when we are lost)

Information for the Wayfinding Task

- Landmarks
- Signs
- Maps
- Directional information

Transferring Spatial Knowledge

- How to transfer spatial knowledge to the real world
 - Training (eg, walk with guide)
 - Planning (eg, map, Streetview)

Wayfinding in Virtual Worlds

- Non-trivial
- Issues with wayfinding in virtual world compared to real world:
 - Less constrained movement
 - 6 DOF possible
 - Absence of physical constraints
 - No fundamental limitations by vehicle or environment
 - Lack of physical motion cues
 - User's motion in physical space does not match motion in virtual space

Wayfinding in Virtual Worlds

- Advantages of wayfinding in virtual worlds:
 - Potential to provide much more information
 - Distractions have less severe consequences

Objectives for Wayfinding

- Exploration
 - browse environment
 - useful to build cognitive map
- Search
 - spatial knowledge acquired and used
 - naïve search not enough info in cognitive map
 - o primed search use of cognitive map

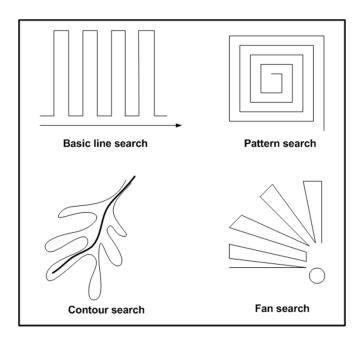
Useful Spatial Knowledge

- Landmark knowledge
 - visual characteristics of environment
 - shape, size, texture
 - relative positioning
- Procedural knowledge
 - sequence of actions required to follow a path (eg, turn by turn directions)
 - requires only sparse visual information
- Survey knowledge
 - maps
 - topographical knowledge

Egocentric and Exocentric Reference Frames

- Egomotion feeling we are the center of space
- Egocentric first person
 - relative to human body
- Exocentric third person
 - relative to world
- Use egocentric when exploring for first time
 - creates landmark/procedural knowledge
- Repeated wayfinding builds up exocentric representation of world
 - creates survey knowledge

User-Centered Wayfinding Support


- Field of view (eg, HMDs)
 - small FOV can inhibit wayfinding
 - user requires repetitive head movements
 - lack of optical flow in periphery
- Motion cues
 - enable judgment of depth and direction
 - supports backtracking of user's own movement
 - cue conflicts can hinder cognitive map development
- Multisensory output for visually impaired
 - audio
 - tactile maps

Tactile Map

User-Centered Wayfinding Support

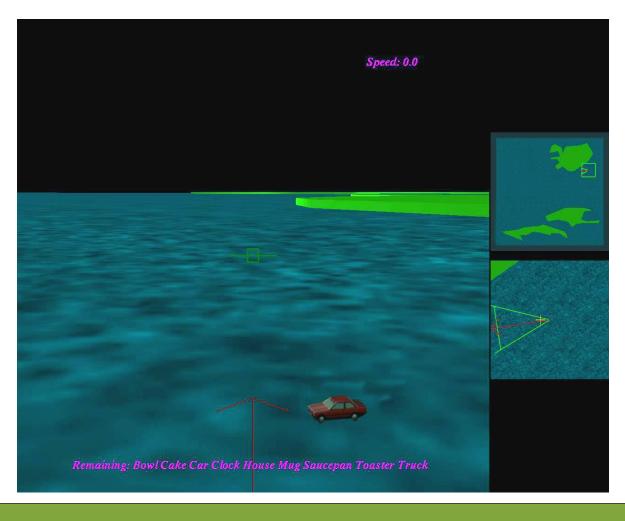
- Presence (feeling of "being there")
 - assumed to have impact on spatial knowledge
 - closer to real world
- Search strategies

Environment-Centered Wayfinding Support

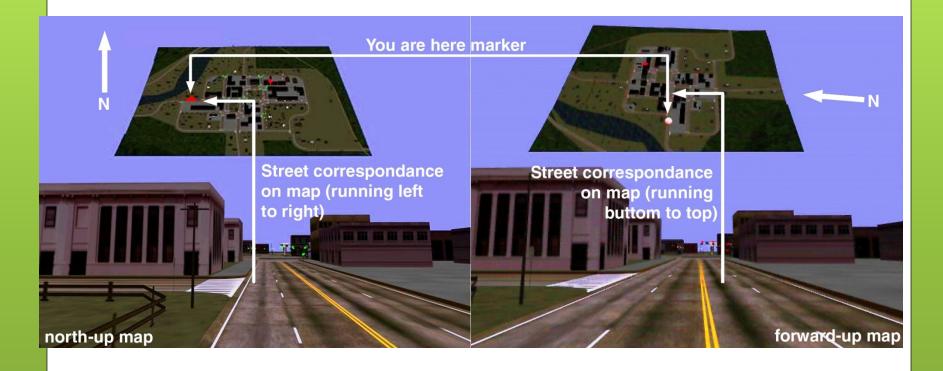
- Environmental design
- Artificial aids

Environmental Design

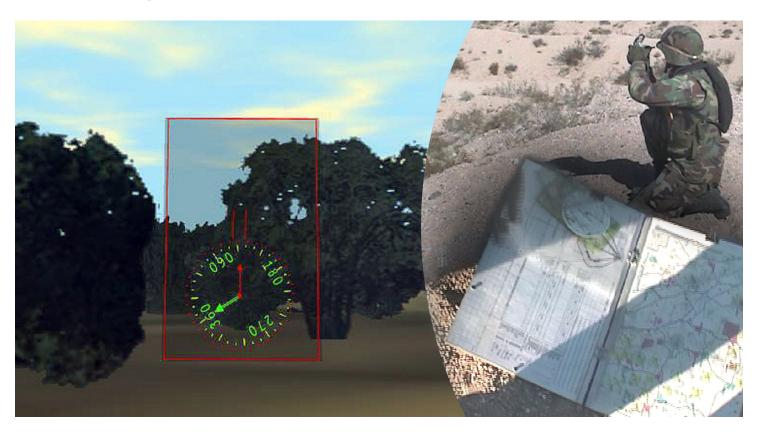
- World's structure and format can aid in wayfinding
- Legibility techniques
 - divide large scale environment into parts with distinct character
 - create simple spatial organization
 - include directional cues to support egocentric/exocentric reference frames
 - often repetitive

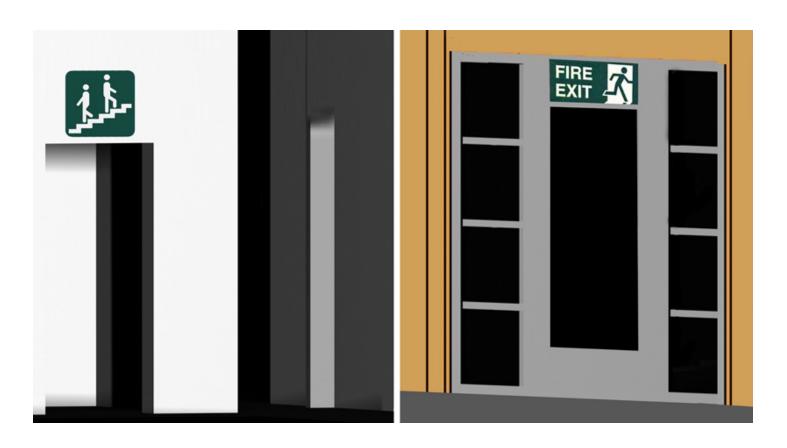

Environmental Design

- Natural environment
 - horizon, atmospheric color, fog, etc.
- Architectural design
 - lighting
 - closed and open spaces
- Color and texture


Artificial Cues

- Maps
- Compasses
- Signs
- Reference objects
- Artificial landmarks
- Trails


Maps


North Up vs. Forward Up

Compass

Signs

Reference Objects

- Objects that have well known size
 - o chair, human figure, etc.
- Useful to estimate distances

Artificial Landmarks

- Local help users in decision making processes
- Global seen from any location

Trails

- Aka. Hansel and Gretel's bread crumbs
- Help user retrace steps
- Show what parts have been visited