Unity3D Basics

CSE165: 3D User Interaction
Robin Xu

- Understanding These Slides

Edited by Connor and Robin

Slides are broken into “Conceptual” and “Technical” slides

Denoted by a “C” and a “T", respectively, and color coded

Conceptual slides are best understood through live workshops/lecture
Technical slides are best reviewed on your own & practiced

Why do we use this method?

Concepts are easy to remember and recall. Lines of code & methods aren’t
Conceptual talks are good for live anecdotes, examples, and explanation
Concepts introduce what’s possible, rather than technical ideas

Live implementation is hard unless everyone has equipment with them
Everybody works at different speeds, so self-paced implementation is best

© O O O O

Method in the Madness

- Agenda

Introduction to Scripting
MonoBehaviours & Debugging
Variables and Serialization
Components

Raycasting
Instantiation

Colliders and Triggers
Coroutines
Linear Interpolation (Lerp)

What We'll Be Covering

- Unity Scripting: C# -

® “Scripting” in Unity is the programming side of game development
® Unity primarily uses the CH# language (C Sharp).
o C#is very similar to Java, another programming language.
® C#isideal for game development because it’s very object-oriented!
o After all, everything we want to interact with is a GameObject!

O Much easier to write code if we can think in terms of objects.
® Unity Scripting is primarily interacting with GameObject components.
o GameObjects are just collections of components.
o Modifying components at runtime gives us dynamic control over the game.
o l.e. How can we change things at runtime?

Unity’s Programming Language

- Scripts As Components -

® ... butwhatisa scriptin Unity?

® Scripts are really just custom components!
e When you create a Script, you’re creating your very own component
o You can give that component behaviour, and even create your own fields!
® You add scripts to GameObijects just like any other component
® Once it's added, your script will appear in the Inspector as well

o With all the other components!
o WEe’'ll go over how to add your own editable fields in later slides

Components in Disguise

Scripts As Components

You can create a new C# script from inside Unity!
Right click in your Assets folder -> “Create” -> “C# Script”

@)

@)

Give it a name!

Create Folder
Show in Explorer C# Script
Open Javascript
Delete Editor Test C# Script
Open Scene Additive Shader
Import New Asset... Scene
Import Package Prefab
Export Package... Audio Mixer
Find References In Scene
Select Dependencies pzeenat
Lens Flare
Refresh Ctrl+R Rénder Tadire
Reinpot: Lightmap Parameters
Reimport All

Run AP| Updater...

Open C# Project

Sprites
Animator Controller
Animation

Animator Override Controller
Avatar Mask

Physic Material
Physics2D Material

GUI Skin

Cuctam Fant

Scripts As Components

e First, select an object to add your script to

o Remember, all GameObjects have components!
e Click “Add Component” in the Inspector

o Type in the name of your script and add it!

o You can also just drag your script into the Inspectolg

Sphere

£ | Edit Collider

Scripts

e We're now ready to dive into our new script!

e (o ahead and open your C# script.
o If you're on Windows, this should open in Visual Studio.
o If you’re on Mac, it will open in MonoDevelop
o Both of these are fine, they’re just different development

environments

o You'll first notice a few things...
o “MonoBehaviour”
o “Start()”
o “Update()”

- MonoBehaviour -

® All scripts in Unity are children of a class called MonoBehaviour

Most importantly, MonoBehaviour provides us with our core game
loop

® This comes in the form of a function called Update()
o Update runs once every single frame, automatically
o This means it could run ~90 times/second in VR!

® You also get access to other MonoBehaviour functions
o Awake() - runs before the first frame of the game
o Start() - runs on the first frame of the game

o FixedUpdate() - runs at a fixed interval, independent of framerate

Core Game Functionality

https://docs.unity3d.com/Manual/ExecutionOrder.html

MonoBehaviour

Notice the class “extends” MonoBehaviour
“Awake()” runs first, before the game starts
“Start()” runs first frame, use for initialization
“OnEnable()” runs when the script is enabled
“Update()” is called every single frame

“FixedUpdate” is called at a fixed interval
o Similar to Update()

o Doesn’t depend on the framerate of your game

o Best for physics calculations!

lass MyFirstScript] :

id Awake() {

void Start () {

void OnEnable() {

void Update () {

void FixedUpdate() {

MonoBehaviour {

- The Console and Debugging -

Debugging in Unity is easy through the Unity console

You should’ve already seen the “Console” tab in your Unity window
When trying to Debug, any messages are printed to that console
You can filter by regular messages, warnings, and errors

You can even pause the editor on a certain line of code!

Debugging Made Easy

The Console and Debugging T

e To print debug messages in Unity, use Debug.Log(string message)
o You can also use LogWarning and LogError to filter your messages
o Use LogFormat to add parameters to your debug messages

e Debug.Break() will pause the editor as soon as it's reached

void DebugExample () {

Debug.Log("This is a normal log message”);
Debug.LogWarning(“"This is a warning message");
Debug.LogError(“This is an error message");

Debug.LogFormat(“Current Time: {0}", Time.time);
Debug.LogWarningFormat("Time Since Last Frame: {@}", Time.deltaTime);
Debug.LogErrorFormat(“Time Scale: {0}", Time.timeScale);

Variables and Types C

® |In CH#, you get access to all the regular primitive types for variables
o Int, float, string, bool, etc.
0 Float is most common when using non-integer numbers
o Vector3 is an extremely important variable that has an x, y, and z value
e However, you also can use components and other scripts as types!
o Thanks MonoBehaviour!
o Things like Collider, Rigidbody, Material, and etc. are all considered types

o Your scripts are types too!

GameObject is also a type, that references an object in your hierarch
public class MyFirstScript : MonoBehaviour {

o
public class MyFirstScript : MonoBehaviour {

i . GameObject myFirstObject;
int myFirstInt;

Camera myMainCamera;
SphereCollider mySphereCollider;
MyFirstScript myNewScript;

float myFirstFloat;
string myFirstString = "Hello!";

- Serialized Variables -

® So, how do you create fields in the Unity Inspector from variables?
o Components can have values edited from the Unity interface

o Since our script is a component, we can do the same thing!
® There are two ways to make components appear in the Unity inspector
o Method 1: Make the variable public
o Method 2: Add a [SerializeField] attribute before the variable
® For primitive type variables, you can edit the value from the Inspector
e For non-primitive types (objects/components), you drag in a reference

o This gives your script immediate access to another object or component!
o Very handy sometimes for connecting objects in your hierarchy

Customized Inspector Fields

Serialized Variables

e Add “public” before you’re variable... then look at it in the inspector!
® This can also be done by adding [SerializeField] before the variable.

o Works for any variable! Try it out!
o Primitive types can be entered directly. Objects need to be dragged

public class MyFirstScript : MonoBehaviour { Jpublic class MyFirstScript : MonoBehaviour {

public Color exampleColor;
public float exampleNumber;
public Vector3 exampleVector;
public GameObject exampleObject;

[SerializeField] private Color exampleColor;
[SerializeField] private float exampleNumber;

[SerializeField] private Vector3 exampleVector;
[SerializeField] private GameObject exampleObject;

v (5 ¥ My First Script (Script) 0,
Script MyFirstScript
Example Color _ 2
Example Number
Example Vector X0 YO Z 0

Example Object None (Game Object) o

Serialized Variables

® Just drag objects into any object fields to assign references!
® These variables will be set in the script (and override default values)

@ Project | [Console

i Create > ;

V 1 A, Favorltes Assets
(©0 All Materials

"E_‘_"{,AII Models

' All Prefabs
O All Scripts

Drag

© Inspector | e
’ ¥ GameObject [] Static ¥
L -
Tag | Untagged | Layer | Default 4
¥ .~ Transform @ &
Position X0 Y 0 Z0
Rotation X|0 Y 0 Z 0
Scale X1 Y1 Zi1
v || ¥ My First Script (Script) #
Script MyFirstScript
i I
e Number 0
Example Ve X0 Y 0 Z0
Example Object one (Game Object) [o]

[Add Component

Getting & Modifying Components

e Getting and modifying components at runtime is critical for scripting
o The behaviour of a GameObject is entirely defined by its components
o Changing these components at runtime is a majority of scripting

® To getacomponent on an object: GetComponent<Type>()
o “Type” can be any other component type, or even another script name
o Ex: GetComponent<Collider>(), GetComponent<MyFirstScript>()

e GetComponent, by itself, checks the object the script is on

® To check another object, use objectreference.GetComponent<...>()
o You can get the object reference through SerializedVariables if needed!
o You could also get it through raycasting and other methods (future slides)

Getting & Modifying Components T

e First, create a serialized variable for the light color that you can change
e Then, let’s try using GetComponent on just a simple Light object

public class LightChanger : MonoBehaviour {

[SerializeField] private Color lightColor = Color.white;

void Update () {

GetComponent<Light>().color = lightColor;

Getting & Modifying Components T

e Next, make sure to add your LightChanger script to a Light object!
o What happens if you add it to an object without a Light component?
o NullReferenceException! Can't find the light component, can’t change it

e Try changing this color during runtime! It should change live

© Inspector
¥ Point light B | [Static ¥
Tag | Untagged 4| Layer | Default ail
¥ A~ Transform &,
Position X0 Y 0 Z\0
Rotation X0 Y0 Z|0
Scale X1 ¥ (1 lz[1]
v Light Changer (Script) &,
Script — o)
Light Color
¥, ¥ Light ¥,
Type [Point +
Range 10 i
Color | 2
Mode | Realtime m
Intensity 1]
|

Indirect Multiplier 1

Raycasting C

In 3D space (and in VR), we often need to interact with distant objects

We can do this through a process called Raycasting
Raycasting involves projecting a 3D ray from a point in a direction
Once the ray hits something, it returns information about what it hits

In VR, this is often used with either the HMD or the controller objects
o Raycasting is the base of gaze interaction: Looking at objects to interact
o With controllers, allows the user to select using rays, or “lasers”

Raycasting

e The function for raycasting in Unity is Physics.Raycast
o https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
o The object you want to hit must have a collider
e Give an initial position and direction, checks if the ray hits anything
o Returns “true” if so, “false” otherwise
o Stores the hit result in “out RaycastHit hitinfo”

id Update() {

Ray myRay = new Ray(.transform.position, .transform.forward) ;

RaycastHit hitObject;

if (Physics.Raycast(myRay, out hitObject, Mathf.Infinity)) {

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Raycasting

e Let's tryjust a really basic raycast from the user’s camera! (Gaze)
o “Debug.DrawRay” will show a visible ray in the Scene view

e For this one, just print out whatever the ray hits as an example
o Note we access the object through hitObject’s collider

void Update () {

Ray myRay = new Ray(.transform.position, .transform.forward);
Debug.DrawRay(myRay.origin, myRay.direction * 1000.06f);

RaycastHit hitObject;

if (Physics.Raycast(myRay, out hitObject, Mathf.Infinity))
{

Debug.LogFormat("Raycast hit {©}", hitObject.collider.gameObject.name);

Raycasting

e Now just add this script to the MainCamera and test!

crample color | #

Example Number 0

Example Vector X0 |yjo [zfo |

Example Object None (Game Object) | o
— —

| vé& ¥ camera @ %

Clear Flags | Skybox s

S, "

| © Inspector | R |
¥ Main Camera | [] static ¥
Tag | MainCamera 4| Layer | Default $
| ¥ .o~ Transform £,
Position X0 |¥j1 'z -10 |
Rotation X0 Yo 'z o |
Scale X11 ¥l [Zf1
v || ¥ My First Script (Script) *’v
Script MyFirstScript

[Console

€ Game

Y
=

o

| D1 Ao|@o

Raycast hit Cube
UnityEngine.Debug:LogFormat(String, Object[])

3781

Raycasting T

e You may not want every single object to respond to raycasting, though

e It may help to make an InteractableObject or RaycastObject script
o Then any object that should respond to your raycast can extend it!
o Make sure to add this script to the object you want to respond

public class RaycastObject : MonoBehaviour {

= Hierarchy I iﬁ © Inspector | iﬁ;
public virtual void OnRaycastEnter/(RaycastHit hitInfo) Lcé‘:: ’ti_tl@'ﬁ!f < @ [RaycastCube | [static =
: DELE — Tag | Untagged ¢/ Layer | Default +|
M.aln (:Zameré - — — —r—
Debug.LogFormat("Raycast entered on {@8}", gameObject.name); Directional Light Rrefat Vwidalecs — o
} GameObject ¥ .~ Transform g
Position X0 1Yo lzfo]
Rotation X 0 xfo zo |
public virtual void| OnRaycast() Scale X1 JAE Izf1 [
{ || @ Raycast Object (Script)]
Debug.LogFormat("Raycast stayed on {1}", gameObject.name); S _Raycaswb]m i
¥ .. Cube (Mesh Filter) v
J Mesh |4 Cube |e
¥ i ¥ Box Collider By
public virtual void|OnRaycastExit() Edit Collider
{ Is Trigger]
Debug.LogFormat("Raycast exited on {2}", gameObject.name); Material \None (Physic Materi, ©

}

Raycasting

e Now, just need to call these RaycastObject functions in our raycast
o To do this, we also need to keep track of the last raycast object
o Let’s start by looking at a skeleton of all the different conditions

private RaycastObject lastRaycastObject;
out hitObject, Mathf.Infinity))
RaycastObject raycastHitObject = hitObject.collider.GetComponent<RaycastObject>();

if (raycastHitObject != null)l..

else if (lastRaycastObject !=

else if (lastRaycastObject = null

Raycasting

e The first case is when we look at a NEW object for the first time
o In other words, this object wasn’t being looked at last frame

if (raycastHitObject != lastRaycastObject)
1

if (lastRaycastObject != null)

{

lastRaycastObject.OnRaycastExit();

1
J

raycastHitObject.OnRaycastEnter(hitObject);
lastRaycastObject = raycastHitObject;

e Otherwise, if it isn't a new object, just call OnRaycast()
o OnRaycast should run every frame the object is being looked at/raycasted

raycastHitObject.OnRaycast();

Raycasting

e Finally, we need cases for when to call OnRaycastExit()
o This should be called as soon as an object that was raycasted isn’t
anymore
o In other words, if the CURRENT hit object is null or not a raycast
object

=lse if (lastRaycastObject != null)
{
lastRaycastObject.OnRaycastExit();
lastRaycastObject = null;
¥
¥

else if (lastRaycastObject != null)
{

lastRaycastObject.OnRaycastExit();
lastRaycastObject = null;

1
J

y myRay = new Ray(.transform.position, .transform.forward) ;
.DrawRay(myRay.origin, myRay.direction * 1808.8f);

RaycastHit hitObject;

if (Physics.Raycast(myRay, out hitObject, M

f.Infinity))
{
raycastHitObject = hitObject.collider.GetComponent<faycas
if (raycastHitObject != null)
If this is a3 NE ject, call Exit t publi lass RaycastObject : MonoBehaviour {
if (raycastHitObject != lastRaycastObject)
if (lastRaycastObject != null) virtual void OnRaycastEnter(RaycastHit hitInfo)
{
lastRaycastObject.OnRaycastExit(); = = ’
} Debug.LogFormat("Raycast entered on {8}", gameObject.name);
raycastHitObject.OnRaycastEnter(hitObject);
lastRaycastObject = raycastHitObject; .) y)
} public virtual void OnRaycast(RaycastHit hitInfo)
. Debug.LogFormat("“Raycast stayed on {@}", gameObject.name);
raycastHitObject.OnRaycast(hitObject); }
}
} : . = -
virtual void OnRaycastExit()
2 1f (laszaycastObject I= pull) = - o .
Debug.LogFormat("Raycast exited on {@}", gameObject.name);
lastRaycastObject.OnRaycastExit(); }
lastRaycastObject = null;
}
}
else ;47(lasrtRayéasfot7>jec1r:r!7: ,;i)r
{

lastRaycastObject.OnRaycastExit();
lastRaycastObject = null;

Gaze Interaction

® Raycasting is a critical component of gaze interaction
o Gaze interaction involves modifying objects just by looking at them!
o Most useful for VR devices that don’t have controllers
® For gaze interaction, you generally also want a gaze cursor
o This will signify what the user is looking at at any given time
o Can also fill/change depending on how long the user is looking at something
o The concept of this delay before activating is called “dwelling”

Gaze Cursors

e Create a Ul -> Image object and use whatever image you want!
o A canvas object should be automatically created
o Set the canvas Render Mode to “World Space”
e Attach and place the cursor in front of the camera
o This can be done by parenting the canvas to the camera, or using a
script
e To always render the cursor over everything, you need a custom
shader
o This shader should go on the actual cursor object (specifically, it's
material)

o https://answers.unity.com/questions/878667/world-space-canvas-on-top-of-everything.h
tml

https://answers.unity.com/questions/878667/world-space-canvas-on-top-of-everything.html
https://answers.unity.com/questions/878667/world-space-canvas-on-top-of-everything.html

- Instantiation

e Instantiation involves creating GameObjects at runtime
o Example: Creating cans as the pop out of a soda machine

o Example: Spawning enemies when you enter a room
o Example: Firing bullets out of a gun

® Thisis done by cloning a Prefab or an existing GameObject
® The function for instantiation is GameObject.Instantiate
o https://docs.unity3d.com/ScriptReference/Object.Instantiate.html

o Technically, all you need for this is the prefab/GameObject
o You can also provide a location (Vector3) and rotation (Quaternion)

Spawning Objects at Runtime

https://docs.unity3d.com/ScriptReference/Object.Instantiate.html

Instantiation

e Let’s try using our existing raycast functionality to instantiate

objects
o When we look at the floor of a room, spawn a specified prefab
o Wait a period of time (dwell) before spawning

e To do this, we'll need a Floor.cs script

: RaycastObject |{

-loat timeBeforeInstantiate = 1.06f;

ate Object prefabTolInstantiate;

Instantiation

e What should happen when the user first looks at the floor?

o Just reset the timer!
o Also need to call “base.OnRaycastEnter” to maintain parent

functionality
o Note the “override” in the signature too. Overriding the parent

bid OnRaycastEnter(RaycastHit hitInfo)

nase.OnRaycastEnter(hitInfo);
timer = 0.06f;

Instantiation

e Now, what's the core functionality of spawning objects on the floor?
o Need to check the timer... then Instantiate if time has passed!

c override void OnRaycast(RaycastHit hitInfo)

base.OnRaycast(hitInfo);
timer += Time.deltaTime;

if (timer > timeBeforelInstantiate)

{

GameObject newObj = .Instantiate(prefabToInstantiate) as GameObject;

newObj.transform.position = hitInfo.point;
timer = 0.0f;

Instantiation

e Now, create a floor object and put this new script on it!
o You can just use a regular cube, and scale it to create a floor
o Be sure to drag in the prefab you want to instantiate and set a timer val

- Colliders and Triggers -

Colliders do more than just cause collisions and physics interactions!
Whenever two colliders “collide”, collision data is sent to components
We gain access to both colliding objects and collision information

This also works with colliders that are “triggers”

o When a trigger comes into contact with another collider

o No physical interactions, but data still sent to script

® We can use collision and trigger events to add more complex behaviour

® These events come in the form of more MonoBehaviour functions
o OnCollisionEnter(Collision other) is called when a collision happens
o OnTriggerEnter(Collider other) is called when a trigger is entered

Responding to Physics Events

Colliders and Triggers

e There are a wide variety of collider/trigger functions that can be used
e Note the method signatures. They have to match exactly!

public void OnTriggerEnter(Collider other) { }
oid OnTriggerExit(Collider other) { }
b»id OnTriggerStay(Collider other) { }

»id OnCollisionEnter(Collision other) { }
>id OnCollisionExit(Collision other) { }
bid OnCollisionStay(Collision other) { }

Quaternions

Unity rotations are stored as something called Quaternions

Whoa whoa whoa, wait, what’s that “Quaternion” thing?!?!
Quaternions contain x, y, z, and w values.

Quaternions are complex numbers. X, y, z are NOT the actual rotations!
However, we can think of Quaternions in terms of Euler Angles

Euler Angles are the rotations that we’re familiar with
o Anglesinthe X, Y, and Z axis. |.e. Rotated 90 degrees in x axis is (90, 0, 0).

d Start () {

Quaternion sampleRotation = Quaternion.Euler(Vector3.zero);

Quaternions T

e Thankfully, Unity can convert between Euler and Quaternions

e Easy method to use: Quaternion.Euler(Vector3 angles)
o Returns a Quaternion using the specified angles

Vector3 newRotation = new Vector3(90.0f, 90.0f, 0.0f);

transform. rotation = Quaternion.Euler(newRotation);

e We can also get Quaternions as Euler Angles
o Just use quaternionValue.eulerAngles) Transform w %,

Position X 0 Y 047 Z 0

Rotation X0 Y D Z i)

Scale X 29183 Y 0.62601 Z 2.9183

Vector3 eulerAngles = transform.rotation.eulerAngles;

e Note: The rotation values in the inspector are thankfully Euler
Angles

Normally, a function runs to completion and returns...

([
e Coroutines are special Unity functions that can pause and resume later
® The pause step in the Coroutine always starts with a “yield”

[

There are several different types of yields...
o vyield return null - Wait for the next frame
o vyield return new WaitForSeconds(float seconds) - Wait for a period of time
o vyield return new WaitForEndOfFrame() - Wait until everything else runs
o These are just the most common!
e When the yield condition is met, the function will resume where it left

off

Beyond Update()

Coroutines

e Coroutines are methods with a return type of IEnumerator

IEnumerator MyFirstCoroutine()

{

yield return null;

}

e To call a Coroutine, we use the StartCoroutine() method

void Start()

{
StartCoroutine(MyFirstCoroutine());

}

IEnumerator MyFirstCoroutine()

{

yield return null;

}

Coroutines

e \What’s the difference between these two Coroutines?

IEnumerator SpawnCube() { IEnumerator SpawnCube() {

int numCubesToSpawn =
int cubesPerSpawn = 5;

255 1t numCubesToSpawn

= 25;
int cubesPerSpawn = 5;

int cubeCount = 0; int cubeCount = 0;

while (cubeCount < numCubesToSpawn) { s IR L S G LRI

. . . . for(int 1 = @; 1 < cubesPerSpawn; i++
for(int i = @; i < cubesPerSpawn; i++) { ? Pt 3

yield return null;

Coroutines

IEnumerator SpawnCube() { IEnumerator SpawnCube() {

int numCubesToSpawn =
int cubesPerSpawn = 5;

25;

int numCubesToSpawn =
nt cubesPerSpawn = 5;

25;

int cubeCount = ©;

cubeCount =
while (cubeCount < numCubesToSpawn) { -

> (cubeCount < numCubesToSpawn) {

- - . . nt 1 = @; 1 < cubesPerSpawn; i++
for(int i = @; i < cubesPerSpawn; i++) { ? Pl 3

yield return null;

Spawns 1 cube every frame, 25 times Spawns 5 cubes every frame, 5 times

Coroutines

e \We often want to make code framerate independent by using time

IEnumerator SpawnCube() { IEnumerator SpawnCube() {

int numCubesToSpawn 252

. - int numCubesToSpawn =
int cubesPerSpawn = 5; int cubesPerSpawn = 5;
= J

25

int cubeCount = 0;)
while (cubeCount < numCubesToSpawn) { int cubeCount = 6;

while (cubeCount < numCubesToSpawn) {
for (int i = @; i < cubesPerSpawn; i++) {

for(int i = @; i < cubesPerSpawn; i++) {

}

yield return new WaitForSeconds(5.0f);

Coroutines

IEnumerator SpawnCube() { IEnumerator SpawnCube() {

int numCubesToSpawn =
int cubesPerSpawn = 5;

25¢ -

? int numCubesToSpawn = 25;
int cubesPerSpawn = 5;
int cubeCount = 0;

while (cubeCount < numCubesToSpawn) { int cubeCount = @;

while (cubeCount < numCubesToSpawn)
for (int i = @; i < cubesPerSpawn; i++) {

for(int i = @; i < cubesPerSpawn; i++) {

}

Spawns 5 cubes every 5 seconds, 5 times Spawns 1 cube every 5 seconds, 25 times

Coroutines

e Be careful! If we're getting 90FPS, that’s ~ 1 frame per 0.01 seconds...
e Code on left will still run every frame, since wait time is faster than FPS

TEnumerator SpawnCube() { IEnumerator SpawnCube() {

int numCubesToSpawn =
int cubesPerSpawn = 5;

25; int numCubesToSpawn =
int cubesPerSpawn = 5;

25

int cubeCount = 0;

int cubeCount = 0;
while (cubeCount < numCubesToSpawn) {

while (cubeCount < numCubesToSpawn) {

for(int i = @; 1 < cubesPerSpawn; i++) { for(int i = @; i < cubesPerSpawn; i++) {

yield return new WaitForSeconds(0.001f); .
yield return null;

- Linear Interpolation -

e Linear Interpolation, or “Lerp”, helps us change values over time

® Lerp calculates intermediate values between two points
o l.e. Afraction between A and B, starting from A and going to B
e The Interpolant is the interval between the two points that we want
o If Point A=0.0, Point B=10.0, and | want the value % between the two...
o The interpolant should be 0.25, yielding 2.5
® Thisis animportant process in game developing and in Unity
o Using Lerp, we can move objects and values gradually between two points

Changes Over Time

Linear Interpolation

e |n Unity, we can lerp across different types of values
o Most common is a Vector3... the same type as position, rotation, and scale
o We can also lerp between colors!
e The Lerp function in Unity is as follows:
o For Vectors: Vector3.Lerp(Vector3 A, Vector3 B, float interpolant)
o For Colors: Color.Lerp(Color A, Color B, float interpolant)

or3(0.0f, 0.ef, 0.0f);
Jector3(5.0f, 5.0f, 5.0f);

0.5f;
Vector3 interpolatedPos -+ Vector3.Lerp(pointA, pointB, interpolant);

e Using Lerp, we can effectively change values across frames!
e ... but how do we calculate the interpolant at each frame?
e Coroutines are a huge help!

Linear Interpolation T

e What we need for a simple lerp: | N T L 2T
o A duration value Vector3 pointB = new Vector3(5.0f, 5.@f, 5.0f);
o Astart point and an end point flaat duration s O,

We want the lerp to happen over time, rather than frames...

2t i =0; i < 222; i += Time.deltaTime)

(134
I

e This will increment “i” by the amount of scaled time since last frame
e \We want the loop to terminate when we’ve reached our desired duration

at i = 0;/ 1 < duration;|i += Time.deltaTime)

Linear Interpolation

e Now how do we calculate the interpolant using these values?
o We have a time counter stored ini ...
o And we have our total desired time stored in duration!

e The interpolant should be i/duration.
o If our change should last 20 seconds, and it's been 7 seconds...
o ...then interpolantis just 7 / 20!

loat 1 = @; i < duration; i += Time.deltaTime)

3t interpolant = i / duration;

e So what values are Point A and Point B?

o Point Ais usually just the starting value of whatever we’re changing
o Point B is just the desired/destination value

Linear Interpolation

IEnumerator MyFirstCoroutine() '

T , SO position goes from A

Vector3 pointA ew Vector3(0.0f, 0.0f, 0.0f);
or3 pointB = new Vector3(5.0f, 5.0f, 5.0f);

float duration 5.0f;

T

9; i < duration; i += Time.deltaTime)

o it won’t ever be 1.0!
bn at the end

float interpolant = i / duration;

transform.position = Vector3.Lerp(pointA, pointB, interpolant);

Linear Interpolation

Vector3 pointA = new Vector3(0.0f, 0.0f, 0.0f);
Vector3 pointB = new Vector3(5.0f, 5.0f, 5.0f);
float duration 5.0f;

float i = @; i < duration; i += Time.deltaTime)

float interpolant = i / duration;

transform.position = Vector3.Lerp(pointA, pointB, interpolant);

transform.position = pointB;

e Easy fix: Just snap position to pointB at the end
e Always makes sure the object reaches it’s final value

General Unity Tutorials

Total Tutorial Time, Excluding Projects & Extras: ~8 hours
Total Tutorial Time, Including Projects (No Extras): ~13 hours

Interface Essentials (30 minutes)
https://unity3d.com/learn/tutorials/topics/interface-essentials
° All of “Using The Unity Interface”, except for #8 (22 minutes)
e Allof “Essential Unity Concepts” (8 minutes)

Beginner Scripting (90 minutes)
https://unity3d.com/learn/tutorials/s/scripting
e “Beginner Gameplay Scripting”, 1-3, 5-27 (90 minutes)

Lighting and Rendering (60 minutes)
https://unity3d.com/learn/tutorials/topics/graphics
° “Rendering and Shading”, 1 - 6 (47 minutes)
e “Cameras and Effects”, Just #1 (8 minutes)
e All of “Geometry in Unity” (5 minutes)

https://unity3d.com/learn/tutorials/topics/interface-essentials
https://learn.unity.com/tutorial/using-the-unity-interface
https://learn.unity.com/tutorial/essential-unity-concepts
https://unity3d.com/learn/tutorials/s/scripting
https://learn.unity.com/project/beginner-gameplay-scripting
https://unity3d.com/learn/tutorials/topics/graphics

General Unity Tutorials

Total Tutorial Time, Excluding Projects & Extras: ~8 hours
Total Tutorial Time, Including Projects (No Extras): ~13 hours

Ul (35 minutes)
https://unity3d.com/learn/tutorials/topics/user-interface-ui
e “Ul Components”, 1-2, 4-6, 11 (35 minutes)

Audio (50 minutes)
https://unity3d.com/learn/tutorials/topics/audio

° All of “Audio Setup” tutorials (4 minutes)

° “Live Trainings on Audio”, just #1 (46 minutes)

Physics (45 minutes)
https://unity3d.com/learn/tutorials/topics/physics

° All of “3D Physics” (30 minutes)

e #3 of “Assignments”: the “Brick Shooter” game (15 minutes)

Project: Roll A Ball (75 minutes)
° https://unity3d.com/learn/tutorials/projects/roll-ball-tutorial (75 minutes)

https://unity3d.com/learn/tutorials/topics/user-interface-ui
https://unity3d.com/learn/tutorials/topics/audio
https://unity3d.com/learn/tutorials/topics/physics
https://unity3d.com/learn/tutorials/projects/roll-ball-tutorial

Thanks!

CSE165: 3D User Interaction
Robin Xu

Visit Triton XR Community for more
at https://tritonxr.ucsd.edu/

https://tritonxr.ucsd.edu/

