
CSE165: 3D User Interaction
Robin Xu

Unity3D Basics

Edited by Connor and Robin

Understanding These Slides
● Slides are broken into “Conceptual” and “Technical” slides
● Denoted by a “C” and a “T”, respectively, and color coded
● Conceptual slides are best understood through live workshops/lecture
● Technical slides are best reviewed on your own & practiced
● Why do we use this method?

○ Concepts are easy to remember and recall. Lines of code & methods aren’t
○ Conceptual talks are good for live anecdotes, examples, and explanation
○ Concepts introduce what’s possible, rather than technical ideas
○ Live implementation is hard unless everyone has equipment with them
○ Everybody works at different speeds, so self-paced implementation is best

Method in the Madness

C

Agenda

●
●
●
●
●
●
●
●
●

What We’ll Be Covering

Unity Scripting: C#

●
●

○
●

○
○

●
○
○
○

Unity’s Programming Language

Scripts As Components

● …
●
●

○
●
●

○
○

Components in Disguise

Scripts As Components

● You can create a new C# script from inside Unity!
○ Right click in your Assets folder -> “Create” -> “C# Script”
○ Give it a name!

Scripts As Components

● First, select an object to add your script to
○ Remember, all GameObjects have components!

● Click “Add Component” in the Inspector
○ Type in the name of your script and add it!
○ You can also just drag your script into the Inspector

Scripts

● We’re now ready to dive into our new script!
● Go ahead and open your C# script.

○ If you’re on Windows, this should open in Visual Studio.
○ If you’re on Mac, it will open in MonoDevelop
○ Both of these are fine, they’re just different development

environments
● You’ll first notice a few things…

○ “MonoBehaviour”
○ “Start()”
○ “Update()”

MonoBehaviour

●
●

●
○
○

●
○
○
○
○

Core Game Functionality

https://docs.unity3d.com/Manual/ExecutionOrder.html

MonoBehaviour

● Notice the class “extends” MonoBehaviour
● “Awake()” runs first, before the game starts
● “Start()” runs first frame, use for initialization
● “OnEnable()” runs when the script is enabled
● “Update()” is called every single frame
● “FixedUpdate” is called at a fixed interval

○ Similar to Update()
○ Doesn’t depend on the framerate of your game
○ Best for physics calculations!

The Console and Debugging

●
●
●
●
●

Debugging Made Easy

The Console and Debugging

● To print debug messages in Unity, use Debug.Log(string message)
○ You can also use LogWarning and LogError to filter your messages
○ Use LogFormat to add parameters to your debug messages

● Debug.Break() will pause the editor as soon as it’s reached

Variables and Types

●
○
○
○

●
○
○
○
○

Serialized Variables

●
○
○

●
○
○

●
●

○
○

Customized Inspector Fields

Edited by Connor and Robin

Serialized Variables

● …
●

○
○

Edited by Connor and Robin

Serialized Variables

●
●

Drag

Getting & Modifying Components

●
○
○

●
○
○

●
●

○
○

Changing Components at Runtime

Getting & Modifying Components

● First, create a serialized variable for the light color that you can change
● Then, let’s try using GetComponent on just a simple Light object

Getting & Modifying Components

● Next, make sure to add your LightChanger script to a Light object!
○ What happens if you add it to an object without a Light component?
○ NullReferenceException! Can’t find the light component, can’t change it

● Try changing this color during runtime! It should change live

Raycasting

●
●
●
●
●

○
○

Raycasting

● The function for raycasting in Unity is Physics.Raycast
○ https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
○ The object you want to hit must have a collider

● Give an initial position and direction, checks if the ray hits anything
○ Returns “true” if so, “false” otherwise
○ Stores the hit result in “out RaycastHit hitInfo”

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Raycasting

● Let’s try just a really basic raycast from the user’s camera! (Gaze)
○ “Debug.DrawRay” will show a visible ray in the Scene view

● For this one, just print out whatever the ray hits as an example
○ Note we access the object through hitObject’s collider

Raycasting

● Now just add this script to the MainCamera and test!

Raycasting

● You may not want every single object to respond to raycasting, though
● It may help to make an InteractableObject or RaycastObject script

○ Then any object that should respond to your raycast can extend it!
○ Make sure to add this script to the object you want to respond

Raycasting

● Now, just need to call these RaycastObject functions in our raycast
○ To do this, we also need to keep track of the last raycast object
○ Let’s start by looking at a skeleton of all the different conditions

Raycasting

● The first case is when we look at a NEW object for the first time
○ In other words, this object wasn’t being looked at last frame

● Otherwise, if it isn’t a new object, just call OnRaycast()
○ OnRaycast should run every frame the object is being looked at/raycasted

Raycasting

● Finally, we need cases for when to call OnRaycastExit()
○ This should be called as soon as an object that was raycasted isn’t

anymore
○ In other words, if the CURRENT hit object is null or not a raycast

object

Raycasting

●

Gaze Interaction

●
○
○

●
○
○
○

Gaze Cursors

● Create a UI -> Image object and use whatever image you want!
○ A canvas object should be automatically created
○ Set the canvas Render Mode to “World Space”

● Attach and place the cursor in front of the camera
○ This can be done by parenting the canvas to the camera, or using a

script
● To always render the cursor over everything, you need a custom

shader
○ This shader should go on the actual cursor object (specifically, it’s

material)
○ https://answers.unity.com/questions/878667/world-space-canvas-on-top-of-everything.h

tml

https://answers.unity.com/questions/878667/world-space-canvas-on-top-of-everything.html
https://answers.unity.com/questions/878667/world-space-canvas-on-top-of-everything.html

Instantiation

●
○
○
○

●
●

○
○
○

Spawning Objects at Runtime

https://docs.unity3d.com/ScriptReference/Object.Instantiate.html

Instantiation

● Let’s try using our existing raycast functionality to instantiate
objects
○ When we look at the floor of a room, spawn a specified prefab
○ Wait a period of time (dwell) before spawning

● To do this, we’ll need a Floor.cs script
○ It should extend RaycastObject

Instantiation

● What should happen when the user first looks at the floor?
○ Just reset the timer!
○ Also need to call “base.OnRaycastEnter” to maintain parent

functionality
○ Note the “override” in the signature too. Overriding the parent

function!

Instantiation

● Now, what’s the core functionality of spawning objects on the floor?
○ Need to check the timer… then Instantiate if time has passed!

Instantiation

● Now, create a floor object and put this new script on it!
○ You can just use a regular cube, and scale it to create a floor
○ Be sure to drag in the prefab you want to instantiate and set a timer val

Colliders and Triggers

●
●
●
●

○
○

●
●

○
○

Responding to Physics Events

Colliders and Triggers

● There are a wide variety of collider/trigger functions that can be used
● Note the method signatures. They have to match exactly!

Quaternions

●
●
●
●
●
●

○

Quaternions

● Thankfully, Unity can convert between Euler and Quaternions
● Easy method to use: Quaternion.Euler(Vector3 angles)

○ Returns a Quaternion using the specified angles

● We can also get Quaternions as Euler Angles
○ Just use quaternionValue.eulerAngles

● Note: The rotation values in the inspector are thankfully Euler
Angles

Coroutines

●
●
●
● …

○
○
○
○

●

Beyond Update()

Coroutines

● Coroutines are methods with a return type of IEnumerator

● To call a Coroutine, we use the StartCoroutine() method

Coroutines

● What’s the difference between these two Coroutines?

Coroutines

Coroutines

● We often want to make code framerate independent by using time

Coroutines

Coroutines

● Be careful! If we’re getting 90FPS, that’s ~ 1 frame per 0.01 seconds…
● Code on left will still run every frame, since wait time is faster than FPS

Linear Interpolation

●
●

○
●

○ …
○

●
○

Changes Over Time

Linear Interpolation

● In Unity, we can lerp across different types of values
○ Most common is a Vector3… the same type as position, rotation, and scale
○ We can also lerp between colors!

● The Lerp function in Unity is as follows:
○ For Vectors: Vector3.Lerp(Vector3 A, Vector3 B, float interpolant)
○ For Colors: Color.Lerp(Color A, Color B, float interpolant)

●
●
●
● Using Lerp, we can effectively change values across frames!
● … but how do we calculate the interpolant at each frame?
● Coroutines are a huge help!

Linear Interpolation

● What we need for a simple lerp:
○ A duration value
○ A start point and an end point

● We want the lerp to happen over time, rather than frames…

● This will increment “i” by the amount of scaled time since last frame
● We want the loop to terminate when we’ve reached our desired duration
●

Linear Interpolation

● Now how do we calculate the interpolant using these values?
○ We have a time counter stored in i …
○ And we have our total desired time stored in duration!

● The interpolant should be i/duration.
○ If our change should last 20 seconds, and it’s been 7 seconds…
○ … then interpolant is just 7 / 20!

● So what values are Point A and Point B?
○ Point A is usually just the starting value of whatever we’re changing
○ Point B is just the desired/destination value

Linear Interpolation

● Each frame, interpolant gets closer to 1.0, so position goes from A
to B

● This code has a potential bug!
○ i will rarely ever equal duration exactly, so it won’t ever be 1.0!
○ Easy fix: Just snap position to endPosition at the end

Linear Interpolation

● Easy fix: Just snap position to pointB at the end
● Always makes sure the object reaches it’s final value

Edited by Robin Xu

Edited by Connor and Robin

General Unity Tutorials
Total Tutorial Time, Excluding Projects & Extras: ~8 hours
Total Tutorial Time, Including Projects (No Extras): ~13 hours

Interface Essentials (30 minutes)
https://unity3d.com/learn/tutorials/topics/interface-essentials

● All of “Using The Unity Interface”, except for #8 (22 minutes)
● All of “Essential Unity Concepts” (8 minutes)

Beginner Scripting (90 minutes)
https://unity3d.com/learn/tutorials/s/scripting

● “Beginner Gameplay Scripting”, 1-3, 5-27 (90 minutes)

Lighting and Rendering (60 minutes)
https://unity3d.com/learn/tutorials/topics/graphics

● “Rendering and Shading”, 1 - 6 (47 minutes)
● “Cameras and Effects”, Just #1 (8 minutes)
● All of “Geometry in Unity” (5 minutes)

https://unity3d.com/learn/tutorials/topics/interface-essentials
https://learn.unity.com/tutorial/using-the-unity-interface
https://learn.unity.com/tutorial/essential-unity-concepts
https://unity3d.com/learn/tutorials/s/scripting
https://learn.unity.com/project/beginner-gameplay-scripting
https://unity3d.com/learn/tutorials/topics/graphics

Edited by Robin Xu

Edited by Connor and Robin

General Unity Tutorials
Total Tutorial Time, Excluding Projects & Extras: ~8 hours
Total Tutorial Time, Including Projects (No Extras): ~13 hours

UI (35 minutes)
https://unity3d.com/learn/tutorials/topics/user-interface-ui

● “UI Components”, 1-2, 4-6, 11 (35 minutes)

Audio (50 minutes)
https://unity3d.com/learn/tutorials/topics/audio

● All of “Audio Setup” tutorials (4 minutes)
● “Live Trainings on Audio”, just #1 (46 minutes)

Physics (45 minutes)
https://unity3d.com/learn/tutorials/topics/physics

● All of “3D Physics” (30 minutes)
● #3 of “Assignments”: the “Brick Shooter” game (15 minutes)

Project: Roll A Ball (75 minutes)
● https://unity3d.com/learn/tutorials/projects/roll-ball-tutorial (75 minutes)

https://unity3d.com/learn/tutorials/topics/user-interface-ui
https://unity3d.com/learn/tutorials/topics/audio
https://unity3d.com/learn/tutorials/topics/physics
https://unity3d.com/learn/tutorials/projects/roll-ball-tutorial

CSE165: 3D User Interaction
Robin Xu

Thanks!

Visit Triton XR Community for more
at https://tritonxr.ucsd.edu/

https://tritonxr.ucsd.edu/

