CSE 167 Fall 2019

Discussion 5



m Project specifications HERE

m DUE Friday Nov 1 at 2pm
CSE Basement 260/270

m Featurestoimplement:
Scene Graph
Animated Robot
Robot Army
Culling


http://ivl.calit2.net/wiki/index.php/Project3F19

Scene Graph

1 Review and Implementation
Creating your Robot

Animating Robot

Creating Robot Army



Scene Graphs
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Scene Graph

m Need 3 classes:
1 Node class
e Base class with a virtual void draw and update functions
1 Transform class
e Responsible for transformations
1 Geometry class
e Similar to your PointCloud class
e Responsible for drawing the objects
m  Will create either a Transform or Geometry type object



Scene Graph
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Node Class

m Abstract base class
1 Need to set up the functions that you want both Geometry
and Transform classes to have

class Node {

public:
virtual void draw(GLuint shaderProgram, glm::mat4 C) = 0;
virtual void update(glm::mat4 C) = 0;

}s



Transform Class

m Derive from Node class
m Functions:
1 draw & update (b/c inheriting from Node)
1 addChild
m Member variables:
(] Transform matrix
e Matrix that places object relative to parent
1 List of child Nodes



Geometry Class

m Derive from Node class

Can take straight from PointCloud.cpp

Functions:

1 draw & update (b/c inheriting from Node)

] Load, parse... any helper functions you may have had
m Member Variables:

1 model

1 VAO, VBO(s), EBO...

1 Points, normals, indices...
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Scene Graph

Building

ArmGeo = new Geometry (“arm.obj”)

BodyGeo = new Geometry (“body.obj”)
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Scene Graph

Building

Satellite = new Transform(I) Satellite

Body Arm
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Scene Graph

Building

Satellite = new Transform(I)
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Scene Graph

Building
Satellite.addChild (Body) Satellite
Satellite.addChild (Rarm)
Satellite.addChild (Larm) / \, \
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Scene Graph

Building

Body .addChild (BodyGeo)
Rarm.addChild (armGeo)
Larm.addChild (armGeo)
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Scene Graph

Drawing

Satellite->draw()
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Scene Graph

Drawing

m Job of Transform’s draw call is to make sure that all its children
get drawn
1 Loop through all kids
1 Calldraw on all kids



Scene Graph

Drawing

Satellite->draw()
= Body->draw ()
= Rarm->draw|()
= Larm->draw ()
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Scene Graph

Drawing

Rarm->draw ()
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Scene Graph

Drawing

Rarm->draw ()

= armGeo->draw ()
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Scene Graph

Drawing

armGeo->draw ()
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Scene Graph

Drawing

armGeo->draw () Satellite
=> glDrawElements(...) / \ \
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Scene Graph

Drawing

armGeo->draw () Satellite
=> glDrawElements(...) / \ \
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Scene Graph

Drawing

m Job of Transform’s draw call is to make sure that all its children
get drawn in the correct position
1 Loop through all kids
1 Calldraw on all kids

m Need to make sure pass along your transform so the child knows
where to go
] Pass down an updated matrix in the draw function



Scene Graph

Drawing

Satellite->draw (X)
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Scene Graph

Drawing

Satellite->draw (X)
= Body->draw (X*1I)
= Rarm->draw (X*I)
= Larm->draw (X*I)
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Scene Graph

Drawing

Rarm->draw (X*I)
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Scene Graph

Drawing

Rarm->draw (X*I) Satellite

= armGeo->draw (X*I*T,)) / \ \
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Scene Graph

Drawing

armGeo->draw (X*I*Tz)
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Scene Graph

Drawing

armGeo—>draw(X*I*T ) Satellite

=> model = X*I*T, *initModel

=> send model matrix to shader/ \ \

=> glDrawElements(.. Body Right Left
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Scene Graph

Drawing

armGeo—>draw(X*I*T ) Satellite

=> model = X*I*T, *initModel

=> send model matrix to shader/ \ \

=> glDrawElements(.. Body Right Left
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Scene Graph

Drawing

m [ransform draw call:
1 Loop through children
1 Call draw on all kids, passing:
e ShaderProgram
o So can pass the model matrix to the shader
e Matrix
o Sowe know where to draw the object



Scene Graph

Drawing

m Geometry draw call:
1 Calculate toWorld matrix
e Based on the passed in matrix and the geometry’s initial
model matrix
1 Send that toWorld matrix to the shader
1 glDrawElements(...)



Creating
your Robots




Creating Robot

m Given Robot parts:
] Head, body, limb, eye...
m Requirements:
1 Need to use at least 3 different body parts
1 4in total
1 3 needto move independently from each other and be
connected to the 4th part
1 Get Creativel



Creating Robot

m Create your Robot using
1 Geometry nodes to load the obj files
1 Transform nodes to place the parts and create your Robot



Rotating
Camera




Rotating Camera

m Need to be able to move your camera
1 Modify trackball to rotate the camera instead

m |nPA2:
1 Found the angle and axis of rotation with trackball mapping
1 Applied rotation matrix to the bunny



Rotating Camera

m For PA3:
1 Find the angle and axis of rotation with trackball mapping
1 Apply rotation to the Camera’s direction Vector
1 Update the Camera Matrix (View matrix)
1 Send the matrix to the shader

// View matrix, defined by eye, center and up.
glm::mat4 Window::view = glm::lookAt(Window: :eye, Window::center, Window: :up);



Animating
Robots




Animating Robot

m Need 3 limbs to move independent of each other
m Need to make your Robot walk
1 Walking in place is OK

m How?
1 Need to apply/update transformation nodes
1 Want cyclic motion for walking...

m Where?
1 With the rest of our update calls



Animating Robot

m Where?
1 initialize_objects()
e Build Robot/Robot Army
] display_callback()
e Drawonroot node (root->drawf(...))
] idle_callback()
e Update calls (root->update(...))



Creating
Robot Army




Robot Army

m Needatleast 100 robots

1 ldentical clones

1 Placeina 2D grid (10x10)

] Make sure all of them are animated
m Camera Movement

1 Rotate the camera with trackball

1 Zoom in and out (with scrolling)



Robot Army
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Satellite

Party
Robot Army
SatelliteParty = new Transform(I)
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Robot Army
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Robot Army

SatelliteParty.
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Robot Army
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Robot Army

m Note:
1 Only load the objects 1x
e ie.ifusing thelimb twice, we just load it one time
1 Only one instance of robot for the entire army
e Draw many robots because we add it as a child to many
Transformation nodes



Questions?



