CSE 167 Fall 2019

Discussion 5

m Project specifications HERE

m DUE Friday Nov 1 at 2pm
CSE Basement 260/270

m Featurestoimplement:
Scene Graph
Animated Robot
Robot Army
Culling

http://ivl.calit2.net/wiki/index.php/Project3F19

Scene Graph

1 Review and Implementation
Creating your Robot

Animating Robot

Creating Robot Army

Scene Graphs

Scene Graph

-

Scene Graph

m Need 3 classes:
1 Node class
e Base class with a virtual void draw and update functions
1 Transform class
e Responsible for transformations
1 Geometry class
e Similar to your PointCloud class
e Responsible for drawing the objects
m Will create either a Transform or Geometry type object

Scene Graph

Hierarchy

/— Node

Transform
/_

/_

Geometry

\

5

S0

N

A

/

Scene Graph

Scene Graph

oo anor

Node Class

m Abstract base class
1 Need to set up the functions that you want both Geometry
and Transform classes to have

class Node {

public:
virtual void draw(GLuint shaderProgram, glm::mat4 C) = 0;
virtual void update(glm::mat4 C) = 0;

}s

Transform Class

m Derive from Node class
m Functions:
1 draw & update (b/c inheriting from Node)
1 addChild
m Member variables:
(] Transform matrix
e Matrix that places object relative to parent
1 List of child Nodes

Geometry Class

m Derive from Node class

Can take straight from PointCloud.cpp

Functions:

1 draw & update (b/c inheriting from Node)

] Load, parse... any helper functions you may have had
m Member Variables:

1 model

1 VAO, VBO(s), EBO...

1 Points, normals, indices...

Scene Graph / Satellite \
Right Left
Bofy Arm Arm
Body Arm
Y Geometry Geometry

Scene Graph

Building

ArmGeo = new Geometry (“arm.obj”)

BodyGeo = new Geometry (“body.obj”)

Body

~ Geometry

Arm
Geometry

Scene Graph

Building

Satellite = new Transform(I) Satellite

Body Arm
- Geometry Geometry

Scene Graph

Building

Satellite = new Transform(I)

Body
Rarm

Larm

B 0

new Transform(Tl)
new Transform(Tz)

new Transform(T3)

Body

Body
Geometry

Satellite

Right Left
Arm Arm

Arm
Geometry

Scene Graph

Building
Satellite.addChild (Body) Satellite
Satellite.addChild (Rarm)
Satellite.addChild (Larm) / \, \
Right Left
Body Arm Arm
e
B 0
Body Arm

s Geometry Geometry

Scene Graph

Building

Body .addChild (BodyGeo)
Rarm.addChild (armGeo)
Larm.addChild (armGeo)

Satellite
Right Left
Bldy Arm Arm
Body Arm
Geometry Geometry

Scene Graph

Drawing

Satellite->draw()

[Satellite]
/

VRN

Right Left
Bofy Arm Arm
Body Arm

Geometry Geometry

Scene Graph

Drawing

m Job of Transform’s draw call is to make sure that all its children
get drawn
1 Loop through all kids
1 Calldraw on all kids

Scene Graph

Drawing

Satellite->draw()
= Body->draw ()
= Rarm->draw|()
= Larm->draw ()

[Satellite
/ . N

———/

Body Arm

Geometry Geometry

Scene Graph

Drawing

Rarm->draw ()

Satellite

S\ N

Right Left
Bofy [Arm] Arm
Body Arm

Geometry Geometry

Scene Graph

Drawing

Rarm->draw ()

= armGeo->draw ()

Satellite

S\ N

Body [Right] Left

Arm Arm

A4

Body Arm
Geometry Geometry

Scene Graph

Drawing

armGeo->draw ()

Satellite
Right Left
Body Arm Arm

NS

Body Arm
Geometry Geometry

Scene Graph

Drawing

armGeo->draw () Satellite
=> glDrawElements(...) / \ \
Right Left
Body o Arm

NS

ya Body [Arm J

Geometry Geometry

Scene Graph

Drawing

armGeo->draw () Satellite
=> glDrawElements(...) / \ \
Right Left
Body o Arm

= A

Body Arm
S Geometry Geometry

Scene Graph

Drawing

m Job of Transform’s draw call is to make sure that all its children
get drawn in the correct position
1 Loop through all kids
1 Calldraw on all kids

m Need to make sure pass along your transform so the child knows
where to go
] Pass down an updated matrix in the draw function

Scene Graph

Drawing

Satellite->draw (X)

[Satellite]
/

e

Body

|

Body
Geometry

\ \\
Right Left
Arm Arm

N/

Arm
Geometry

Scene Graph

Drawing

Satellite->draw (X)
= Body->draw (X*1I)
= Rarm->draw (X*I)
= Larm->draw (X*I)

[Satellite
/ . N

——/

Body Arm

Geometry Geometry

Scene Graph

Drawing

Rarm->draw (X*I)

Satellite

S\ N

Right Left
Bofy [Arm] Arm
Body Arm

Geometry Geometry

Scene Graph

Drawing

Rarm->draw (X*I) Satellite

= armGeo->draw (X*I*T,)) / \ \

= [Right] Left

Arm Arm

A4

Geometry Geometry

Scene Graph

Drawing

armGeo->draw (X*I*Tz)

Satellite
Right Left
Body Arm Arm

NS

Body Arm
Geometry Geometry

Scene Graph

Drawing

armGeo—>draw(X*I*T) Satellite

=> model = X*I*T, *initModel

=> send model matrix to shader/ \ \

=> glDrawElements(.. Body Right Left
Arm Arm

NS

‘ Body Arm

Geometry Geometry

Scene Graph

Drawing

armGeo—>draw(X*I*T) Satellite

=> model = X*I*T, *initModel

=> send model matrix to shader/ \ \

=> glDrawElements(.. Body Right Left
Arm Arm

b A

/ - + Body Arm

Geometry Geometry

Scene Graph

Drawing

m [ransform draw call:
1 Loop through children
1 Call draw on all kids, passing:
e ShaderProgram
o So can pass the model matrix to the shader
e Matrix
o Sowe know where to draw the object

Scene Graph

Drawing

m Geometry draw call:
1 Calculate toWorld matrix
e Based on the passed in matrix and the geometry’s initial
model matrix
1 Send that toWorld matrix to the shader
1 glDrawElements(...)

Creating
your Robots

Creating Robot

m Given Robot parts:
] Head, body, limb, eye...
m Requirements:
1 Need to use at least 3 different body parts
1 4in total
1 3 needto move independently from each other and be
connected to the 4th part
1 Get Creativel

Creating Robot

m Create your Robot using
1 Geometry nodes to load the obj files
1 Transform nodes to place the parts and create your Robot

Rotating
Camera

Rotating Camera

m Need to be able to move your camera
1 Modify trackball to rotate the camera instead

m |nPA2:
1 Found the angle and axis of rotation with trackball mapping
1 Applied rotation matrix to the bunny

Rotating Camera

m For PA3:
1 Find the angle and axis of rotation with trackball mapping
1 Apply rotation to the Camera’s direction Vector
1 Update the Camera Matrix (View matrix)
1 Send the matrix to the shader

// View matrix, defined by eye, center and up.
glm::mat4 Window::view = glm::lookAt(Window: :eye, Window::center, Window: :up);

Animating
Robots

Animating Robot

m Need 3 limbs to move independent of each other
m Need to make your Robot walk
1 Walking in place is OK

m How?
1 Need to apply/update transformation nodes
1 Want cyclic motion for walking...

m Where?
1 With the rest of our update calls

Animating Robot

m Where?
1 initialize_objects()
e Build Robot/Robot Army
] display_callback()
e Drawonroot node (root->drawf(...))
] idle_callback()
e Update calls (root->update(...))

Creating
Robot Army

Robot Army

m Needatleast 100 robots

1 ldentical clones

1 Placeina 2D grid (10x10)

] Make sure all of them are animated
m Camera Movement

1 Rotate the camera with trackball

1 Zoom in and out (with scrolling)

Robot Army

Satellite
Right Left
Bofy Arm Arm
Body Arm

Geometry Geometry

Satellite

Party
Robot Army
SatelliteParty = new Transform(I)
Satellite
Right Left
Bofy Arm Arm
Body Arm

Geometry Geometry

Robot Army

LBsat
LTsat
RBsat
RTsat

new

new

new

new

Transform(T’l)
Transform(T’z)
Transform(T’3)

Transform(T’4)

Satellite
Party

LBsat LTsat RBsat RTsat

Satellite

O\ N

Body

|

Body
Geometry

Right Left
Arm Arm

N/

Arm
Geometry

Robot Army

SatelliteParty.
SatelliteParty.
SatelliteParty.
SatelliteParty.

Satellite
Party

NN

LBsat LTsat RBsat RTsat
addChild (LBsat)
addChild (LTsat))
Satellite
addChild (RBsat) //// \\ \\\\\
addChild (RTsat) < Right Lofi
l y Arm Arm
Body Arm
Geometry Geometry

Robot Army

LBsat.
LTsat.
RBsat.
RTsat.

addChild (Satellite)
addChild (Satellite)
addChild (Satellite)
addChild (Satellite)

Satellite
Party

NN

LBsat LTsat RBsat RTsat

N

Satellite

O\ N

Body

|

Body
Geometry

Right Left
Arm Arm

N/

Arm
Geometry

[Satellite]
woantd

Robot Army / / \ \

LBsat LTsat RBsat RTsat

SatelliteParty->draw (I) \/

Satellite

O\ N

Right Left
Body Arm Arm

> LN/

Body Arm
Geometry Geometry

[Satellite]
Party
A\

Robot Army / / \ \

LBsat LTsat RBsat RTsat
SatelliteParty->draw(I) \/
S Satellite
model = I*T’ *I*T *initModel / \ \
Right Left
L Arm Arm
)\ < l \/
Body Arm
Geometry Geometry

e

[Satellite]
Party
A\

Robot Army / / \ \

LBsat LTsat RBsat RTsat
SatelliteParty->draw(I) \/
Satellite
< - Body Right Left
E— Arm Arm
Y Y
e | e |
Body Arm
Geometry Geometry

Robot Army

m Note:
1 Only load the objects 1x
e ie.ifusing thelimb twice, we just load it one time
1 Only one instance of robot for the entire army
e Draw many robots because we add it as a child to many
Transformation nodes

Questions?

