
CSE 167:
Introduction to Computer Graphics
Lecture #8: Visibility

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2019

Announcements
 Midterm
 Exams will likely be returned and discussed next Thursday in

class

2

Topics
 Visibility Culling
 Occlusion

3

Visibility Culling

Visibility Culling
 Goal:

Discard geometry that does not need to be drawn to
speed up rendering

 Types of culling:
 View frustum culling
 Small object culling
 Degenerate culling
 Backface culling
 Occlusion culling

5

View Frustum Culling
 Triangles outside of view frustum are off-screen

6

Images: SGI OpenGL Optimizer Programmer's Guide

Videos
 Rendering Optimizations - Frustum Culling
 http://www.youtube.com/watch?v=kvVHp9wMAO8

 View Frustum Culling Demo
 http://www.youtube.com/watch?v=bJrYTBGpwic

 View Frustum Culling in Action
 http://giant.gfycat.com/InexperiencedMadKiskadee.webm

7

http://www.youtube.com/watch?v=kvVHp9wMAO8
http://www.youtube.com/watch?v=bJrYTBGpwic
http://giant.gfycat.com/InexperiencedMadKiskadee.webm

Bounding Volumes
 Simple shape that

completely
encloses an object

 Generally a box or
sphere
 Easier to calculate culling for

spheres
 Easier to calculate tight fits

for boxes
 Intersect bounding

volume with view frustum
instead of each primitive

8

Bounding Box
 How to cull objects consisting of may polygons?
 Cull bounding box
 Rectangular box, parallel to object space coordinate planes
 Box is smallest box containing the entire object

9

Image: SGI OpenGL Optimizer Programmer's Guide

View Frustum Culling
 Frustum defined by 6 planes
 Each plane divides space into

“outside”, “inside”
 Check each object against

each plane
 Outside, inside, intersecting

 If “outside” of at least one plane
 Outside the frustum

 If “inside” all planes
 Inside the frustum

 Else partly inside and partly out
View frustum

10

•p

• x

Distance to Plane
 A plane is described by a point p on the plane and a unit

normal n
 Find the (perpendicular) distance from point x to the

plane


n

11

•p

• x

Distance to Plane
 The distance is the length of the projection of x-p

onto n

dist = x − p()
 

⋅
n


n x−p

 

12

 The distance has a sign
 positive on the side of the plane the normal points to
 negative on the opposite side
 zero exactly on the plane

 Divides 3D space into two infinite half-spaces

•p

Distance to Plane

dist(x) = x − p()
 

⋅
n 

n Positive

Negative
13

Distance to Plane
 Simplification

 d is independent of x
 d is distance from the origin to the plane
 We can represent a plane with just d and n

14

Frustum With Signed Planes

 Normal of each plane points outside
 “outside” means positive distance
 “inside” means negative distance

15

 For sphere with radius r and origin x, test the distance to
the origin, and see if it is beyond the radius

 Three cases:
 dist(x)>r

 completely above

 dist(x)<-r
 completely below

 -r<dist(x)<r
 intersects

Test Sphere and Plane

•


n Positive

Negative

16

Culling Summary
 Transform view frustum plane equations in camera space.
 Pre-compute the normal n and value d for each of the six

planes.
 Given a sphere with center x and radius r in camera space.
 For each plane:

 if dist(x) > r: sphere is outside! (no need to continue loop)
 add 1 to count if dist(x)<-r

 If we made it through the loop, check the count:
 if the count is 6, the sphere is completely inside
 otherwise the sphere intersects the frustum
 (can use a flag instead of a count)

17

 Want to be able to cull the whole group quickly
 But if the group is partly in and partly out, want to be

able to cull individual objects

Culling Groups of Objects

18

Hierarchical Bounding Volumes
 Given hierarchy of objects
 Bounding volume of each node encloses the bounding

volumes of all its children
 Start by testing the outermost bounding volume
 If it is entirely outside, don’t draw the group at all
 If it is entirely inside, draw the whole group

19

 If the bounding volume is partly inside and partly
outside
 Test each child’s bounding volume individually
 If the child is in, draw it; if it’s out cull it; if it’s partly in and

partly out, recurse.
 If recursion reaches a leaf node, draw it normally

Hierarchical Culling

20

Video
 Math for Game Developers - Frustum Culling
 http://www.youtube.com/watch?v=4p-E_31XOPM

21

http://www.youtube.com/watch?v=4p-E_31XOPM

Small Object Culling
 Object projects to less than a specified size
 Cull objects whose screen-space bounding box is less than a

threshold number of pixels

22

Degenerate Culling
 Degenerate triangle has no area
 Normal n=0
 All vertices in a straight line
 All vertices in the same place

23

Source: Computer Methods in Applied Mechanics
and Engineering, Volume 194, Issues 48–49

Backface Culling
 Consider triangles as “one-sided”, i.e., only visible from

the “front”
 Closed objects
 If the “back” of the triangle is facing away from the camera, it is

not visible
 Gain efficiency by not drawing it (culling)
 Roughly 50% of triangles in a scene are back facing

24

Backface Culling
 Convention:

Triangle is front facing if vertices are ordered
counterclockwise

p0

p1

p2

p0

p1

p2Front-facing Back-facing

25

Backface Culling
 Compute triangle normal after projection (homogeneous

division)

 Third component of n negative: front-facing, otherwise
back-facing
 Remember: projection matrix is such that homogeneous

division flips sign of third component

26

OpenGL
 OpenGL allows one- or two-sided triangles

 One-sided triangles:
glEnable(GL_CULL_FACE); glCullFace(GL_BACK)

 Two-sided triangles (no backface culling):
glDisable(GL_CULL_FACE)

27

glDisable(GL_CULL_FACE); glEnable(GL_CULL_FACE);

Occlusion Culling
 Geometry hidden behind occluder cannot be seen
 Many complex algorithms exist to identify occluded geometry

28

Images: SGI OpenGL Optimizer Programmer's Guide

Video
 Umbra 3 Occlusion Culling explained
 http://www.youtube.com/watch?v=5h4QgDBwQhc

29

http://www.youtube.com/watch?v=5h4QgDBwQhc

Level-of-Detail Techniques
 Don’t draw objects smaller than a threshold
 Small feature culling
 Popping artifacts

 Replace 3D objects by 2D impostors
 Textured planes representing the objects

 Adapt triangle count to projected size

Impostor generation

Original vs. impostor

30
Size dependent mesh reduction

(Data: Stanford Armadillo)

Occlusion

Occlusion

• At each pixel, we need to
determine which triangle
is visible

32

Painter’s Algorithm
 Paint from back to front
 Need to sort geometry according to depth
 Every new pixel always paints over previous pixel in frame

buffer
 May need to split triangles if they intersect

 Intuitive, but slow algorithm
 Still used today to render translucent geometry

33

Z-Buffering
 Z-buffer stores depth (z-) value for each pixel
 Z-buffer is dedicated memory in GPU
 Algorithm:
 Create z-buffer with as many entries as pixels in render

window
 Initialize z-buffer with farthest z value
 During rasterization, compare stored value to new value
 Update pixel only if new value is smaller

setpixel(int x, int y, color c, float z)
if(z < zbuffer(x,y)) then
{ zbuffer(x,y) = z; color(x,y) = c }

 Depth test is performed by GPU  very fast
34

Z-Buffer Example

35

Displaying the Z-Buffer
 Interpret z-buffer values as luminance values
 gl_FragCoord in fragment shader contains depth value
 Output this depth value as a color:

void main() { FragColor = vec4(vec3(gl_FragCoord.z), 1.0); }

36

Z-Buffering in OpenGL
 In OpenGL applications:
 Ask for a depth buffer when you create your GLFW window.

 glfwOpenWindow(512, 512, 8, 8, 8, 0, 16, 0, GLFW_WINDOW)

 Place a call to glEnable(GL_DEPTH_TEST) in your program's
initialization routine.

 Set zNear and zFar clipping planes (glm::perspective(fovy,
aspect, zNear, zFar)) to optimize depth buffer precision: near
plane as far away as possible, far plane as close as possible
without cutting into scene

 Add GL_DEPTH_BUFFER_BIT parameter to glClear:
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 Z-buffer is non-linear: uses smaller depth bins in
foreground for greater depth resolution near viewer

37

Z-Buffer Fighting

 Problem: polygons close together don’t get rendered correctly.
Errors change with camera perspective  flicker

 Cause: differently colored fragments from different polygons
being rasterized to same pixel and depth  not clear which is
in front

 Solutions:
 Move surfaces farther apart, so that fragments rasterize into different

depth bins
 Bring near and far planes closer together
 Use a higher precision depth buffer. Note that OpenGL often defaults to

16 bit even if your graphics card supports 24 bit or 32 bit depth buffers
38

Z-buffer fighting Desired result

Translucent Geometry
 Need to depth sort translucent geometry and render

with Painter’s Algorithm (back to front)
 Problem: incorrect blending with cyclically overlapping

geometry

 Solutions:
 Back to front rendering of translucent geometry (Painter’s

Algorithm), after rendering opaque geometry
 Theoretically: need to store multiple depth and color values

per pixel (not practical in real-time graphics)

39

	CSE 167:�Introduction to Computer Graphics�Lecture #8: Visibility
	Announcements
	Topics
	Visibility Culling
	Visibility Culling
	View Frustum Culling
	Videos
	Bounding Volumes
	Bounding Box
	View Frustum Culling
	Distance to Plane
	Distance to Plane
	Distance to Plane
	Distance to Plane
	Frustum With Signed Planes
	Test Sphere and Plane
	Culling Summary
	Culling Groups of Objects
	Hierarchical Bounding Volumes
	Hierarchical Culling
	Video
	Small Object Culling
	Degenerate Culling
	Backface Culling
	Backface Culling
	Backface Culling
	OpenGL
	Occlusion Culling
	Video
	Level-of-Detail Techniques
	Occlusion
	Occlusion
	Painter’s Algorithm
	Z-Buffering
	Z-Buffer Example
	Displaying the Z-Buffer
	Z-Buffering in OpenGL
	Z-Buffer Fighting
	Translucent Geometry

