
CSE 190
Discussion 5

PA3: CAVE Simulator

Agenda

● PA3:
○ CAVE Simulator Intro
○ Rendering to Texture using OpenGL
○ Generalized Perspective Projection

● Helpful references

Project 3

● Project 3 Due Date: May 17th 2pm
○ If you have scheduling conflicts, let us know

● The idea of this assignment:
○ Understand the concept of the CAVE system
○ Learn how to render the scene to textures on quads
○ Figure out the implementation of Perspective Projection
○ And to have fun!

http://ivl.calit2.net/wiki/index.php/Project3S19
http://www.cs.utah.edu/~thompson/vissim-seminar/on-line/CruzNeiraSig93.pdf
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-14-render-to-texture/
http://csc.lsu.edu/~kooima/articles/genperspective/

CAVE Simulator

● Features to implement:

○ Render the scene to 3 squares
○ Ability to switch the viewport

from HMD position to the
Controller position

○ Ability to freeze the viewport
position

○ Manipulate calibration cube
○ Details in assignment page

1 2

3

Render Scene To Texture

Render to Texture

● Goal:
○ Create CAVE screens, rendering different views to different

screens

● To achieve this:
○ Create a texture out of the different views
○ Render each screen as a texture
○ Paste texture onto a quad

● We have three screens and two eyes so
○ Need to render the scene six times to off-screen buffers

Framebuffers

● Framebuffer:
○ A container for textures
○ Holds textures we can use later
○ Allows us to render to places other than the screen we see

● To use the framebuffer:

● Will need a texture to hold what to draw on our CAVE screens
● Note:

○ Pass in NULL for the data since this is a placeholder for our screen
information

○ Also need to attach the texture to the framebuffer

Textures

Renderbuffers

● Renderbuffers:
○ A type of framebuffer attachment (like textures)
○ Store data in a format that is optimized for off-screen

rendering to a framebuffer (write only)

● Good for PA3 since we want depth information but don’t need to
render the depth information (don’t need to read)

Renderbuffers

● To create, follow similar steps as with VBO/VAO/textures...
○ Generate
○ Bind
○ Information about what it will contain

Renderbuffers

● Renderbuffer is a framebuffer attachment so
○ Attach Renderbuffer to currently bound framebuffer

(similar to attaching our texture)

Rendering to the texture

● To render:
○ Bind the new framebuffer to make

it the active framebuffer
○ Render as normal

▪ This colors the texture in our
framebuffer

○ Bind the default framebuffer
○ Render the screen quad with the

resulting texture

Rendering to the texture

● NOTE:
○ The texture width and height need to match what is used in

glViewport() from RiftApp class

● So when you are rendering your scene:
○ Save the glViewport parameters before rendering to FB
○ Set the glViewport to match the texture size
○ Render the scene onto the texture
○ Reset the viewport
○ Render the Cave

Generalized Perspective
Projection

Perspective Projection

● Typically we use the projection matrix generated by
gluPerspective (or glm::perspective)

● This works under the assumption that we are directly in front of
the screen and perpendicular to it
○ So we are looking at the center of the screen

Off-axis Perspective Projection

● In a CAVE, we cannot view every screen head on, so each screen
needs a different perspective

● glFrustum (or glm::frustum) can generate the perspective matrix
for us given several parameters (left. right, top, bottom,
nearPlane, farPlane)

(near and far plane parameters are not shown)

1. Calculate vectors from eye position to the screen corners
2. Calculate distance from eye position to the screen space origin

Calculating Frustum Parameters

1.

2.

Calculating Frustum Parameters

 3. Calculate the frustum extents at the near plane

Almost there

● glFrustum assumes that the viewer is perpendicular to the
screen

● We need two more capabilities:
○ Rotate the screen out of the XY plane
○ Correctly position it relative to the user

● We want to transform the screens XY plane to be aligned with
the viewer XY plane

● M: maps into screen coordinates
● Want to go from screen coordinates to viewer so:

Projection Plane Orientation

○ Use inverse of screen
coordinate system (M)

○ Note: M-1 = MT since M is
orthogonal

View Point Offset

● Need to account for eye offset
○ Reposition the center

● Can be accomplished using the OpenGL function glTranslatef (or
glm::translate)

Generalized Perspective Projection

● Finally, all put together:

● A sample implementation of the perspective matrix:
○ http://csc.lsu.edu/~kooima/articles/genperspective/

http://csc.lsu.edu/~kooima/articles/genperspective/

Helpful References

● Framebuffers
○ https://learnopengl.com/Advanced-OpenGL/Framebuffers
○ http://www.songho.ca/opengl/gl_fbo.html

● Render to Texture
○ http://www.opengl-tutorial.org/intermediate-tutorials/tuto

rial-14-render-to-texture/

● Generalized Perspective Projection
○ http://csc.lsu.edu/~kooima/articles/genperspective/

https://learnopengl.com/Advanced-OpenGL/Framebuffers
http://www.songho.ca/opengl/gl_fbo.html
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-14-render-to-texture/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-14-render-to-texture/
http://csc.lsu.edu/~kooima/articles/genperspective/

QUESTIONS?

