CSE 167:
Introduction to Computer Graphics
Lecture #8: Texture Mapping

Juargen P. Schulze, Ph.D.
University of California, San Diego
Spring Quarter 2015

Announcements

» Homework 4 due Friday at |pm

» Midterms to be returned on Thursday

answers given in class

i = UCSD

Lecture Overview

» Texture Mapping
Overview
Wrapping
Texture coordinates

Anti-aliasing

’ = UCSD

Large Triangles

Pros:

» Often sufficient for simple
geometry

» Fast to render
Cons:

» Per vertex colors look boring
and computer-generated

’ = UCSD

Texture Mapping

» Map textures (images) onto
surface polygons

» Same triangle count, much more
realistic appearance

) = UCSD

Texture Mapping

» Goal: map locations in texture to
locations on 3D geometry
» Texture coordinate space

Texture pixels (texels) have texture
coordinates (s,?)

» Convention

Bottom left corner of texture is at
(s,7) = (0,0)

Top right corner is at (s,7) = (1,1)

(1,1)

(0,0) >

A)

Texture coordinates

= UCSD

Texture Mapping

» Store 2D texture coordinates s,t with each triangle vertex

Vi
(s,7) = (0.65,0.75)

(1,1)

Vo
(s,1) = (0.6,0.4)

v, t
(s,1) =(0.4,0.45)

Triangle in any space before projection

(0,0) >

S
Texture coordinates

' = UCSD

Texture Mapping

» Each point on triangle gets color from its corresponding
point in texture

Vi (1,1)
(s,1) = (0.65,0.75)

Vo t
(s,1) = (0.6,0.4)

\p)
s,t) =(0.4,0.45
(5.1) = (0.4,0.45) 0.0) ;
Triangle in any space before projection A

Texture coordinates

° = UCSD

Texture Mapping
Primitives
P B
. | Modeling and viewing |

transformation

Shading
B

; Projection 5
I e

Rasterization
= =

Fragment processing | ‘ Includes texture mapping
= = B

Frame-buffer access
(z-buffering)

’ mage < UCSD

Texture Look-Up

» Given interpolated texture coordinates (s, t) at current

pixel
» Closest four texels in texture space are at

(Sorto)s (S1to)s (Soty)s (S1t))
» How to compute pixel color!?

(A
N

__+_
______+_

10

Nearest-Neighbor Interpolation

» Use color of closest texel

| I
t— -
| I
: :
TR
| \I
e S o

» Simple, but low quality and aliasing

: = UCSD

Bilinear Interpolation

|. Linear interpolation horizontally:

Ratio in s direction r:
s—S,

ry =

\)

5175
Ctop = teX(SO’tI) (I'rs) t tex(s|,t|) rQs

Cbot = teX(SO’ t-'O) (I'rs) + teX(SI’tO) rQs

12

o | | -

Bilinear Interpolation

2. Linear interpolation vertically

Ratio in t direction r:

[—1
r=——"
I =1
C = Chor (I'rt) + Ctop e

13

Lecture Overview

» Texture Mapping
Wrapping
Texture coordinates

Anti-aliasing

" = UCSD

Wrap Modes

» Texture image extends from [0,0] to [1,1] in texture
space
What if (s,7) texture coordinates are beyond that range!

» =2 Texture wrap modes

" = UCSD

Repeat

» Repeat the texture

Creates discontinuities at edges

unless texture designed to line up

:.::t_‘,,.

Seamless brick wall texture
(by Christopher Revoir)

Texture Space =
0 P < UCSD

Clamp

» Use edge value everywhere outside data range [0..1]
» Or, ignore the texture outside [0..1]

S (i

S

Texture Space =
Y P =< UCSD

Wrap Mode Specification in OpenGL

» Default:

glTexParameterf(GL_TEXTURE_2D,
GL _TEXTURE_WRAP_S, GL _REPEAT);

glTexParameterf(GL_TEXTURE_2D,
GL TEXTURE_WRAP_T, GL_REPEAT);

» Options for wrap mode:

GL_CLAMP (requires border to be set)
GL CLAMP_TO_EDGE (repeats last pixel in texture),
GL_REPEAT

” = UCSD

Example

Rendered by Byungil Jeong, EVL

" = UCSD

Video
» OpenGL -Texture

” = UCSD

Lecture Overview

» Texture Mapping
Wrapping
Texture coordinates

Anti-aliasing

3 = UCSD

Texture Coordinates

What if texture extends across multiple polygons?
—> Surface parameterization

» Mapping between 3D positions on surface and 2D texture
coordinates

Defined by texture coordinates of triangle vertices

» Options for mapping:
Parametric
Orthographic
Projective
Spherical
Cylindrical

Skin

~ = UCSD

Cylindrical Mapping
» Similar to spherical mapping, but with cylindrical coordinates

Cylinder Sides

Texture Coordinates
(0.75. 1.0)

‘ (1.0.1.0)/ \(0.5.1.0)
— T

(0.25, 1.0)

S v (0.0,0.0)

S

” = UCSD

Spherical Mapping

» Use spherical coordinates
» “Shrink-wrap” sphere to object

Texture map Mapping result

B = UCSD

Orthographic Mapping

» Use linear transformation of object’s xyz coordinates

» Example:

xyz in object space Xyz in camera space

> = UCSD

Parametric Mapping

» Surface given by parametric functions

a::f(u,v) y:f(u,’u) z:f(u,v)

» Very common in CAD

» Clamp (u#,v) parameters to [0..1] and use as texture
coordinates (s,7)

” = UCSD

Lecture Overview

» Texture Mapping
Wrapping
Texture coordinates

Anti-aliasing

7 <=UCSD

Aliasing

» What could cause this aliasing effect?

R

i M A A (A i/ o‘. IAMS

e NN —

S NN
N

5; TR
%

~ =UCSD

Aliasing

Sufficiently
sampled,

no aliasing ~ + + - T 1 T Che

i) Pout sacydirng within O Nyqont bust

Insufficiently
sampled,

aliasing TTTTTTTTT

©) Pomt eamyiong beyood the Nyquas nait

Image: Robert L. Cook

High frequencies in the input data can appear as
lower frequencies in the sampled signal

N <= UCSD

Antialiasing: Intuition

» Pixel may cover large area on triangle in camera space
» Corresponds to many texels in texture space
» Need to compute average

Image plane Camera space Texture space

Texels

“Pixel area

Lecture Overview

» Texture Mapping
Mip Mapping

) = UCSD

Antialiasing Using Mip-Maps

» Averaging over texels is expensive
Many texels as objects get smaller
Large memory access and compuation cost
» Precompute filtered (averaged) textures
Mip-maps
» Practical solution to aliasing problem
Fast and simple

Available in OpenGL, implemented in GPUs
Reasonable quality

32

= UCSD

Mipmaps

» MIP stands for multum in parvo = “much in little” (Williams
1983)

Before rendering

» Pre-compute and store down scaled versions of textures
Reduce resolution by factors of two successively

Use high quality filtering (averaging) scheme

» Increases memory cost by |/3
1/3 = Y4t 1/16+1/64+...

» Width and height of texture should be powers of two (non-
power of two supported since OpenGL 2.0)

> = UCSD

» Example: resolutions 512x512,256x256, 128x128, 64x64,
32x32 pixels

A

J \fi. “ ;., \
i L gad e x

» saLevel 0

» One texel in level 4 is the average of 4*=256 texels in
level O

Rendering With Mipmaps

» “Mipmapping”

» Interpolate texture coordinates of each pixel as without
mipmapping

» Compute approximate size of pixel in texture space

» Look up color in nearest mipmap
E.g., if pixel corresponds to 10x10 texels use mipmap level 3
Use nearest neighbor or bilinear interpolation as before

Y = UCSD

Mipmapping

Image plane Camera space Texture space

Texels

- Mip-map level 0
° Mip-map level 1
° Mip-map level 2

o ° Mip-rege eyetSpD

Nearest Mipmap, Nearest Neighbor

» Visible transition between mipmap levels

Nearest Mipmap, Bilinear

» Visible transition between mipmap levels

Trilinear Mipmapping

» Use two nearest mipmap levels

E.g., if pixel corresponds to 10x10 texels, use mipmap levels 3
(8x8) and 4 (16x16)

» 2-Step approach:

Step |: perform bilinear interpolation in both mip-maps
Step 2:linearly interpolate between the results

» Requires access to 8 texels for each pixel

» Supported by hardware without performance penalty

) = UCSD

More Info

» Mipmapping tutorial w/source code:

* = UCSD

