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Announcements

� This Thursday: midterm exam

� In-class

� Closed book

� This Friday: late grading for project 6

� Sunday: first blog for final project due
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Final Project

� http://ivl.calit2.net/wiki/index.php/Project7SP15
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Overview

� Bi-linear patch

� Bi-cubic Bézier patch

� Advanced parametric surfaces
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Curved Surfaces

Curves

� Described by a 1D series of control points

� A function x(t)

� Segments joined together to form a longer curve

Surfaces

� Described by a 2D mesh of control points

� Parameters have two dimensions (two dimensional parameter 
domain)

� A function x(u,v)

� Patches joined together to form a bigger surface

5



� x(u,v) describes a point in space for any given (u,v) pair

� u,v each range from 0 to 1

Parametric Surface Patch

0 1

1

u

v

x

y

z

x(0.8,0.7)

u

v

2D parameter domain

6



� x(u,v) describes a point in space for any given (u,v) pair

� u,v each range from 0 to 1

� Parametric curves

� For fixed u0 , have a v curve x(u0,v)

� For fixed v0 , have a u curve x(u,v0)

� For any point on the surface, there are a pair of parametric 
curves through that point
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Tangents

� The tangent to a parametric curve is also tangent to the 
surface

� For any point on the surface, there are a pair of (parametric) 
tangent vectors

� Note: these vectors are not necessarily perpendicular to each 
other
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Tangents

• Notation:

   • The tangent along a u curve, AKA the tangent in the u direction, is written as:

                           
∂x

∂u
(u,v) or ∂

∂u
x(u,v) or xu (u,v)

   • The tangent along a v curve, AKA the tangent in the v direction, is written as:

                         
∂x

∂v
(u,v) or ∂

∂v
x(u,v) or xv (u,v)

• Note that each of these is a vector-valued function:

   •  At each point x(u,v) on the surface, we have tangent vectors ∂

∂u
x(u,v) and ∂

∂v
x(u,v) 
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Surface Normal

� Normal is cross 
product of the two 
tangent vectors

� Order matters!

 

               
r
n(u,v) =

∂x

∂u
(u,v) ×

∂x

∂v
(u,v)

Typically we are interested in the unit normal, so we need to normalize

               
r
n*

(u,v) =
∂x

∂u
(u,v) ×

∂x

∂v
(u,v)
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n(u,v) =

r
n*

(u,v)
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n*
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Bilinear Patch

� Control mesh with four points p0, p1, p2, p3

� Compute  x(u,v) using a two-step construction scheme
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Bilinear Patch (Step 1)

� For a given value of u, evaluate the linear curves on the two u-

direction edges

� Use the same value u for both:

q0=Lerp(u,p0,p1) q1=Lerp(u,p2,p3)
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Bilinear Patch (Step 2)

� Consider that q0, q1 define a line segment

� Evaluate it using v to get x
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Bilinear Patch

� Combining the steps, we get the full formula 
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Bilinear Patch

� Try the other order

� Evaluate first in the v direction
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Bilinear Patch

� Consider that r0, r1 define a line segment

� Evaluate it using u to get x

x = Lerp(u,r0 ,r1)

p0 p1

p2

p3

u

v

r0

r1

x

16



Bilinear Patch

� The full formula for the v direction first:

x(u,v) = Lerp(u, Lerp(v,p
0
,p

2
), Lerp(v,p

1
,p

3
))
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Bilinear Patch

� Patch geometry is independent of the order of u and v

x(u,v) = Lerp(v, Lerp(u,p
0
,p

1
), Lerp(u,p

2
,p

3
))

x(u,v) = Lerp(u, Lerp(v,p0 ,p2 ), Lerp(v,p1,p3))
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Bilinear Patch

� Visualization
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Bilinear Patches

� Weighted sum of control points

� Bilinear polynomial

� Matrix form

20

[ ] 






 −








−=

v

v

pp

pp
uuvux

1
1),(

31

20



Properties
� Interpolates the control points

� The boundaries are straight line segments

� If all 4 points of the control mesh are co-planar, the patch is flat

� If the points are not co-planar, we get a curved surface

� saddle shape (hyperbolic paraboloid)

� The parametric curves are all straight line segments!

� a (doubly) ruled surface: has (two) straight lines through every point

� Not terribly useful as a modeling primitive
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Overview

� Bi-linear patch

� Bi-cubic Bézier patch

� Advanced parametric surfaces
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Bicubic Bézier patch

� Grid of 4x4 control points, p0 through p15

� Four rows of control points define Bézier curves along u
p0,p1,p2,p3; p4,p5,p6,p7; p8,p9,p10,p11; p12,p13,p14,p15

� Four columns define Bézier curves along v
p0,p4,p8,p12; p1,p6,p9,p13; p2,p6,p10,p14; p3,p7,p11,p15
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Bézier Patch (Step 1)

� Evaluate four u-direction Bézier curves at scalar value u [0..1]

� Get points q0 … q3
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Bézier Patch (Step 2)

� Points q0 … q3 define a Bézier curve

� Evaluate it at v [0..1]
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Bézier Patch

� Same result in either order (evaluate u before v or vice versa)
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Bézier Patch: Matrix Form 



28

Bézier Patch: Matrix Form

� Cx stores the coefficients of the bicubic equation for x

� Cy stores the coefficients of the bicubic equation for y

� Cz stores the coefficients of the bicubic equation for z

� Gx stores the geometry (x components of the control points)

� Gy stores the geometry (y components of the control points)

� Gz stores the geometry (z components of the control points)

� BBez is the basis matrix (Bézier basis)

� U and V are the vectors formed from the powers of u and v

� Compact notation

� Leads to efficient method of computation

� Can take advantage of hardware support for 4x4 matrix arithmetic



Properties

� Convex hull: any point on the surface will fall within the convex hull of the 
control points

� Interpolates 4 corner points

� Approximates other 12 points, which act as “handles”

� The boundaries of the patch are the Bézier curves defined by the points on 
the mesh edges

� The parametric curves are all Bézier curves
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Tangents of a Bézier patch

� Remember parametric curves x(u,v0), x(u0,v) where v0, u0 is 
fixed

� Tangents to surface = tangents to parametric curves

� Tangents are partial derivatives of x(u,v)

� Normal is cross product of the tangents
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Tangents of a Bézier patch
q0 = Bez(u,p0 ,p1,p2 ,p3)

q1 = Bez(u,p4 ,p5 ,p6 ,p7 )

q2 = Bez(u,p8 ,p9 ,p10 ,p11)

q3 = Bez(u,p12 ,p13,p14 ,p15 )

∂x

∂v
(u,v) = Be ′z (v,q0 ,q1,q2 ,q3)

         

r0 = Bez(v,p0 ,p4 ,p8 ,p12 )

r1 = Bez(v,p1,p5 ,p9 ,p13)

r2 = Bez(v,p2 ,p6 ,p10 ,p14 )

r3 = Bez(v,p3,p7 ,p11,p15 )
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p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12
p13

p14

p15

u

v

r0 r1

r2 r3

x

q0

q1

q2

q3

∂x

∂u

∂x

∂v

31



Tessellating a Bézier patch

� Uniform tessellation is most straightforward 

� Evaluate points on a grid of u, v coordinates

� Compute tangents at each point, take cross product to get per-vertex 
normal

� Draw triangle strips with glBegin(GL_TRIANGLE_STRIP)

� Adaptive tessellation/recursive subdivision

� Potential for “cracks” if patches on opposite sides of an edge divide 
differently

� Tricky to get right, but can be done
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Piecewise Bézier Surface

� Lay out grid of adjacent meshes of control points
� For C0 continuity, must share points on the edge

� Each edge of a Bézier patch is a Bézier curve based only on 
the edge mesh points

� So if adjacent meshes share edge points, the patches will line 
up exactly

� But we have a crease…

Grid of control points Piecewise Bézier surface
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C1 Continuity

� We want the parametric curves that cross each edge to 
have C1 continuity

� So the handles must be equal-and-opposite across the edge:

http://www.spiritone.com/~english/cyclopedia/patches.html
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Modeling With Bézier Patches
� Original Utah teapot, from Martin 

Newell's PhD thesis, consisted of 28 
Bézier patches.

� The original had no rim for the lid and 
no bottom

� Later, four more patches were added to 
create a bottom, bringing the total to 
32

� The data set was used by a number of 
people, including graphics guru Jim 
Blinn. In a demonstration of a system of 
his he scaled the teapot by .75, creating 
a stubbier teapot. He found it more 
pleasing to the eye, and it was this 
scaled version that became the highly 
popular dataset used today. 

35 Source: http://www.holmes3d.net/graphics/teapot/



Overview

� Bi-linear patch

� Bi-cubic Bézier patch

� Advanced parametric surfaces
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Problems with Bezier and NURBS Patches

� NURBS surfaces are versatile
� Conic sections

� Can blend, merge, trim…

� But:
� Any surface will be made of 

quadrilateral patches (quadrilateral 
topology)

� This makes it hard to

� Join or abut curved pieces

� Build surfaces with complex topology 
or structure
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