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Announcements

» This Thursday: midterm exam
In-class

Closed book
» This Friday: late grading for project 6
» Sunday: first blog for final project due
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Final Project

» http://ivl.calit2.net/wiki/index.php/Project/SP|15




Overview

» Bi-linear patch
» Bi-cubic Bézier patch
» Advanced parametric surfaces
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Curved Surfaces

Curves

» Described by a ID series of control points

» A function x(?)

» Segments joined together to form a longer curve

Surfaces
» Described by a 2D mesh of control points

» Parameters have two dimensions (two dimensional parameter
domain)

» A function x(u,v)
» Patches joined together to form a bigger surface
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Parametric Surface Patch

» X(u,v) describes a point in space for any given (u,v) pair
u,v each range from 0O to |
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2D parameter domain



Parametric Surface Patch

» X(u,v) describes a point in space for any given (u,v) pair
u,v each range from 0O to |
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» Parametric curves 2D parameter domain

For fixed u,, have a v curve x(u,,v)
For fixed v,, have a u curve x(u,v,)

For any point on the surface, there are a pair of parametric
curves through that point
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Tangents

» The tangent to a parametric curve is also tangent to the
surface

» For any point on the surface, there are a pair of (parametric)
tangent vectors

» Note: these vectors are not necessarily perpendicular to each
other




Tangents

e Notation:
e The tangent along a u curve, AKA the tangent in the u direction, is written as:

X
— (u,v)or <x(u,v) orx (u,v)
ou u

du
e The tangent along a v curve, AKA the tangent in the v direction, is written as:

X
—(u,v)or a%X(u,v) or x (u,v)

ov

¢ Note that each of these is a vector-valued function:
e At each point x(u,v) on the surface, we have tangent vectors < x(u,v) and 2 x(u,v)



Surface Normal

» Normal is cross
product of the two
tangent vectors

» Order matters!

n(u,v)= —X(u,v) X a—X(u,v)

ou dv

Typically we are interested in the unit normal, so we need to normalize

i (u,v)= i(u,v} X %(u,v}
n(u,v)= ﬁ*(u,v)
i’ (u,v))
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Bilinear Patch

» Control mesh with four points py, Py P2 P3

» Compute X(u,v) using a two-step construction scheme

i = UCSD



Bilinear Patch (Step 1)

» For a given value of u, evaluate the linear curves on the two u-
direction edges

» Use the same value u for both:

qo=Lerp(u,py,p,1) q;=Lerp(u,p,ps)

| q,
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Bilinear Patch (Step 2)

» Consider that (,, ¢, define a line segment

» Evaluate it using v to get X

X = Lerp(v,q,.q;)

| q,
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Bilinear Patch

» Combining the steps, we get the full formula

X(u,v) = Lerp(v, Lerp(u,p,,p,), Lerp(u,p,,p;))

| q,

" = UCSD



Bilinear Patch

» Try the other order

» Evaluate first in the v direction

r, = Lerp(v,p,.p,) T, = Lerp(v,p,.p,)
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Bilinear Patch

» Consider that r, r; define a line segment

» Evaluate it using u to get x

X = Lerp(u,r,,1,)
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Bilinear Patch

» The full formula for the v direction first:

X(u,v)= Lerp(u, Lerp(v,p,,P, ), Lerp(v,p,, P3))
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Bilinear Patch

» Patch geometry is independent of the order of uand v

X(u,v)= Lerp(v, Lerp(u,p,,p,), Lerp(u,p,,p;))
X(u,v) = Lerp(u, Lerp(v,p,, P, ), Lerp(v,p,,P;))
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Bilinear Patch

» Visualization
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Bilinear Patches

» Weighted sum of control points
x(u,v) = (1-u)(1=v)po+u(l—v)p1+ (1 —u)vps+uvp;
» Bilinear polynomial

x(u,v) = (po—pP1—P2+P3)uv+(p1—pPo)u+(pP2—Po)v+Po
» Matrix form

x(u,v):[l—u u]{po pz}{l—v}
P Ps 4
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Properties

Interpolates the control points
The boundaries are straight line segments
If all 4 points of the control mesh are co-planar, the patch is flat

v v Vv Vv

If the points are not co-planar, we get a curved surface
saddle shape (hyperbolic paraboloid)
» The parametric curves are all straight line segments!
a (doubly) ruled surface: has (two) straight lines through every point

» Not terribly useful as a modeling primitive
21




Overview

» Bi-linear patch
» Bi-cubic Bézier patch
» Advanced parametric surfaces
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Bicubic Bézier patch

» Grid of 4x4 control points, p, through p:

» Four rows of control points define Bézier curves along u

PosP15P2:P3; P4sP5:P6>P75 PssP9sP10sP115 P12:P13:P145P15
» Four columns define Bézier curves along v

PosP4sP3sP12; P15P6°P9sP13> P2sP6sP10°P14> P3sP7:P115P15
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Bézier Patch (Step 1)

» Evaluate four u-direction Bézier curves at scalar value u [0..1]

» Get points q, (5

q, = Bez(u,p,,p;.P,.P;)
q, = Bez(u,p,,Ps.Pg-P)
q, = Bez(u,pg, Py, P 10> Py1)
q; = Bez(u,p,5, P55 P14 Pis)

24
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Bézier Patch (Step 2)

» Points q, q; define a Bézier curve

» Evaluateitatv [0..1]
X(ua V) — BeZ(Va q07q17q27q3)

> = UCSD



Bézier Patch

» Same result in either order (evaluate u before v or vice versa)

q, = Bez(u,p,,p,.P,,P;) r, = Bez(v.py, P, PssP1y)
q, = Bez(u,p,,Ps,Ps>P;) I, = Bez(v,p,,Ps, Py P;3)
q, = Bez(u,pg, Py, Po-P11) & r, = Bez(v,p,.P¢Pio-Pis)
q; = Bez(U, PPz PrasPys) r; = Bez(v,p;,P,, P15 P)s)
x(u,v) = Bez(v,q,,9,,9,,9;) X(u,v) = Bez(u,r,,r,,r,,1;)
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Bézier Patch: Matrix Form

_l/l3_ V3
l/l2 V2
U= V= B, =
u Vv
Cx = BgeszBBeZ
C = BzeZGyB Bes G, =
CZ — BzezGZBBeZ
V'CU
x(u,v)= VTCyU
ViCcU

27

Pix
Psx
Pox
P3x

p14x

D3«
Py
Prix
Pisx_
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vV VvV VvV VvV VvV VvV VvV VY

Bézier Patch: Matrix Form

C, stores the coefficients of the bicubic equation for x
C, stores the coefficients of the bicubic equation for y
C, stores the coefficients of the bicubic equation for z
G, stores the geometry (x components of the control points)
G, stores the geometry (y components of the control points)

y
G, stores the geometry (z components of the control points)

z
BBez
U and V are the vectors formed from the powers of u and v

is the basis matrix (Bézier basis)

Compact notation
Leads to efficient method of computation
Can take advantage of hardware support for 4x4 matrix arithmetic
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Properties

» Convex hull:any point on the surface will fall within the convex hull of the
control points

» Interpolates 4 corner points
» Approximates other |2 points, which act as “handles”

» The boundaries of the patch are the Bézier curves defined by the points on
the mesh edges

» The parametric curves are all Bézier curves




Tangents of a Bézier patch

» Remember parametric curves x(u,v), X(u,,v) Where v, u,is
fixed

» Tangents to surface = tangents to parametric curves
» Tangents are partial derivatives of x(u,v)

» Normal is cross product of the tangents
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Tangents of a Bézier patch

q, = Bez(u,py,P;>P,>P3) ry = Bez(v.py,Py>Ps:Pry)
q, = Bez(u,p,,Ps,Ps-P;) r, = Bez(v,p,Ps:PosPy3)
q, = Bez(u,pg, Py, Pio>P11) r, = Bez(v,P,,PssPios P1y)
q, = Bez(tt,p 1, P13 P1s>Pis) r, = Bez(v.ps,P7P115Pis)
3—):(u,v) = Bez’(v,q,,9,-9,-93) g—z(u,;;) = Be7'(u,r,,1,,1,,T;)
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Tessellating a Bézier patch

» Uniform tessellation is most straightforward
Evaluate points on a grid of u, v coordinates

Compute tangents at each point, take cross product to get per-vertex
normal
Draw triangle strips with glBegin(GL_TRIANGLE_STRIP)
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» Adaptive tessellation/recursive subdivision

Potential for “cracks” if patches on opposite sides of an edge divide
differently

Tricky to get right, but can be done

> = UCSD



Piecewise Beézier Surface

» Lay out grid of adjacent meshes of control points
» For C° continuity, must share points on the edge

» Each edge of a Bézier patch is a Bézier curve based only on
the edge mesh points

» So if adjacent meshes share edge points, the patches will line
up exactly

» But we have a crease...

Piecewise Bézier surface -
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C! Continuity

» We want the parametric curves that cross each edge to
have C'! continuity

» So the handles must be equal-and-opposite across the edge:

http://www.spiritone.com/~english/cyclopedia/patches.html




Modeling With Bézier Patches

» Original Utah teapot, from Martin .
Newell's PhD thesis, consisted of 28 ;{

Bézier patches. @, ,‘$ -
]| AR Wiiar
Q \ ‘4}_"‘.,'

» The original had no rim for the lid and
no bottom

» Later, four more patches were added to

create a bottom, bringing the total to
32

» The data set was used by a number of FTTN 7 ///—7»51, T
people, including graphics guru Jim 0 /@7 AR S
Y T

Blinn. In a demonstration of a system of I LN W . 3 L0 Y

his he scaled the teapot by .75, creating
a stubbier teapot. He found it more
pleasing to the eye, and it was this
scaled version that became the highly
popular dataset used today.

35 Source: http://www.holmes3d.net/graphics/teapot/ —i— UCSD



Overview

» Bi-linear patch
» Bi-cubic Bézier patch
» Advanced parametric surfaces
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Problems with Bezier and NURBS Patches

» NURBS surfaces are versatile
» Conic sections
» Can blend, merge, trim...

» But:

» Any surface will be made of
quadrilateral patches (quadrilateral

topology)

» This makes it hard to

» Join or abut curved pieces

» Build surfaces with complex topology
or structure




