CSE 167: Introduction to Computer Graphics Lecture #7: Textures

> Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2014

Announcements

- Project 2 due Friday, Oct. 24th
- Midterm Exam Thursday, Oct. 30th
- After class: solar eclipse!

Example

Rendered by Byungil Jeong, EVL

Video

OpenGL – Texture

http://www.youtube.com/watch?v=zBF0dxEuIKE

Lecture Overview

- Texture Mapping
 - Wrapping
 - ▶ Texture coordinates
 - Anti-aliasing

Texture Coordinates

What if texture extends across multiple polygons?

- → Surface parameterization
- Mapping between 3D positions on surface and 2D texture coordinates
 - Defined by texture coordinates of triangle vertices
- Options for mapping:
 - Parametric
 - Orthographic
 - Projective
 - Spherical
 - Cylindrical
 - Skin

Parametric Mapping

Surface given by parametric functions

$$x = f(u, v)$$
 $y = f(u, v)$ $z = f(u, v)$

- Very common in CAD
- ▶ Clamp (u,v) parameters to [0..1] and use as texture coordinates (s,t)

Orthographic Mapping

- Use linear transformation of object's xyz coordinates
- **Example:**

$$\begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Projective Mapping

- Use perspective projection of xyz coordinates
 - OpenGL provides GL_TEXTURE matrix to apply on texture coordinates
- Can be used for "fake" lighting effects

Spherical Mapping

- Use spherical coordinates
- "Shrink-wrap" sphere to object

Texture map

Mapping result

Cylindrical Mapping

- Similar to spherical mapping, but with cylindrical coordinates
- Useful for faces

Source: "Facial model adaptation from a monocular image sequence using a textured polygonal model", Chang et al. 2002

Skin Mapping

- Complex technique to unfold surface onto plane
- Unfolding mathematics must be done backwards when texture mapping

Lecture Overview

- Texture Mapping
 - Wrapping
 - ▶ Texture coordinates
 - Anti-aliasing

Aliasing

What could cause this aliasing effect?

Aliasing

Sufficiently sampled, no aliasing

Insufficiently sampled, aliasing

Image: Robert L. Cook

High frequencies in the input data can appear as lower frequencies in the sampled signal

Antialiasing: Intuition

- ▶ Pixel may cover large area on triangle in camera space
- Corresponds to many texels in texture space
- Need to compute average

Lecture Overview

- Texture Mapping
 - Mip Mapping

Antialiasing Using Mip-Maps

- Averaging over texels is expensive
 - Many texels as objects get smaller
 - Large memory access and computation cost
- Precompute filtered (averaged) textures
 - Mip-maps
- Practical solution to aliasing problem
 - Fast and simple
 - Available in OpenGL, implemented in GPUs
 - Reasonable quality

MIP stands for multum in parvo = "much in little" (Williams 1983)

Before rendering

- Pre-compute and store down scaled versions of textures
 - Reduce resolution by factors of two successively
 - Use high quality filtering (averaging) scheme
- Increases memory cost by 1/3
 - $| 1/3 = \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots$
- Width and height of texture should be powers of two (nonpower of two supported since OpenGL 2.0)

Example: resolutions 512x512, 256x256, 128x128, 64x64, 32x32 pixels

▶ 20 Level 0

▶ One texel in level 4 is the average of 4^4 =256 texels in level 0

▶ 21 Level 0

Rendering With Mipmaps

- "Mipmapping"
- Interpolate texture coordinates of each pixel as without mipmapping
- Compute approximate size of pixel in texture space
- Look up color in nearest mipmap
 - ▶ E.g., if pixel corresponds to 10x10 texels use mipmap level 3
 - Use nearest neighbor or bilinear interpolation as before

Mipmapping

- · Mip-map level 0
- Mip-map level 1
- Mip-map level 2
- Mip-man teyet SD

Nearest Mipmap, Nearest Neighbor

Visible transition between mipmap levels

Nearest Mipmap, Bilinear

Visible transition between mipmap levels

Trilinear Mipmapping

- Use two nearest mipmap levels
 - E.g., if pixel corresponds to 10x10 texels, use mipmap levels 3 (8x8) and 4 (16x16)
- ▶ 2-Step approach:
 - Step I: perform bilinear interpolation in both mip-maps
 - Step 2: linearly interpolate between the results
- Requires access to 8 texels for each pixel
- Supported by hardware without performance penalty

More Info

- Mipmapping tutorial w/source code:
 - http://www.videotutorialsrock.com/opengl_tutorial/mipmapping/text.php

