CSE 167: Introduction to Computer Graphics

Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

Today

- Course organization
- Course overview
- Math review

Course Staff

Instructor

Jürgen Schulze, Ph.D.
 Adjunct Professor in CSE
 Research Scientist at Qualcomm Institute

Assistants

- Teaching Assistants:
 - Dylan McCarthy (Head TA)
 - Ching Lee
 - Kevin Lim
- Tutors:
 - Phillip Ho
 - David Nuernberger
 - Hoang Tran

Course Organization

Lecture

▶ Tue/Thu, 9:30am-10:50am, Center Hall 105

Homework Discussion

Monday afternoons, 3:00-3:50pm, PCYNH 121

Homework Grading

- Due dates are Fridays at 1:00pm
- ▶ Turn in by demonstration in CSE lab 260 or 270

Written Examinations

Two in class closed book

Office Hours

Instructor

▶ Tue I Iam-noon at Atkinson Hall, room 2125

TAs/Tutors

See Piazza

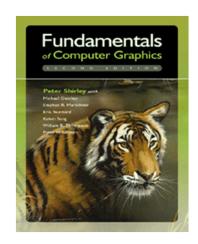
Prerequisites

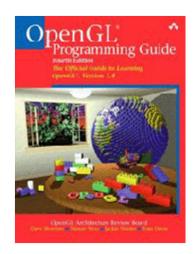
Expected is familiarity with:

- ▶ Solid C++, or strong Java or Python skills
- Object oriented programming concepts
- ▶ Formally taught in CSE 100

Course Web Site

- ▶ URL: http://ivl.calit2.net/wiki/index.php/CSE167F2015
- Class schedule
- Lecture slides
- Textbook recommendations
- Homework assignments
- Grading + exam information


Ted


- For to http://ted.ucsd.edu and select CSE167
 - Log in with your Active Directory account
- Lists homework and exam grades
 - Check your grades often

Textbooks

Recommended textbooks:

- Peter Shirley: Fundamentals of Computer Graphics, any edition (Google Books has full text version)
- OpenGL Programming Guide
 Older versions available on-line, no need to buy the book

Programming Projects

- ▶ 7 programming assignments
 - Last one is team project and counts more towards grade
- Find assignments and schedule on home page
- Base code and documentation on home page
- Use CSE basement labs or your own PC/laptop
- Individual assistance by TA/tutor during office hours
- Turn in by demonstration to TA, tutor or instructor during homework grading hours on Fridays.
 - Demonstration can be done on lab PC or personal laptop
 - Grading from Ipm until at least 2:15pm
 - Required: submit source code by Ipm

If you can't come to grading session

- Submit source code by Ipm on due date
- Email instructor:
 - reason of absence
 - when you want to demo instead (in TA/tutor office hours)

Written Examinations

Two in-class written exams.

Closed book. No cheat sheets.

For dates see course schedule on web site.

Grading

▶ Homework Projects I-6: 10% each

Written exams:
10% each

Final project: 20%

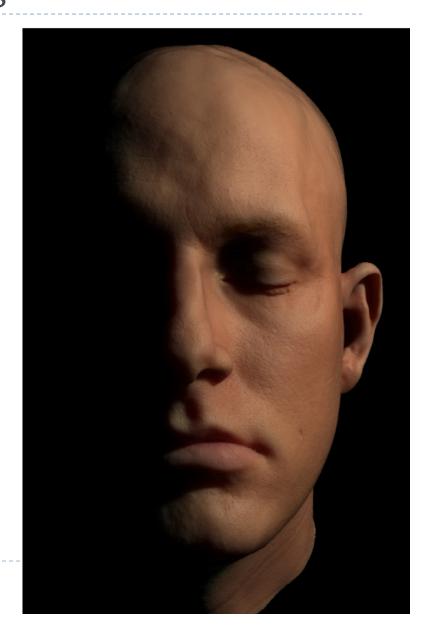
- Late submission policy for homework projects:
 - ▶ Allowed within I week of due date, with 25% penalty
 - Example: for perfect score of 110 points (including extra credit), when submitted late you will get 83 points)

Today

- Course organization
- Course overview
- Math review

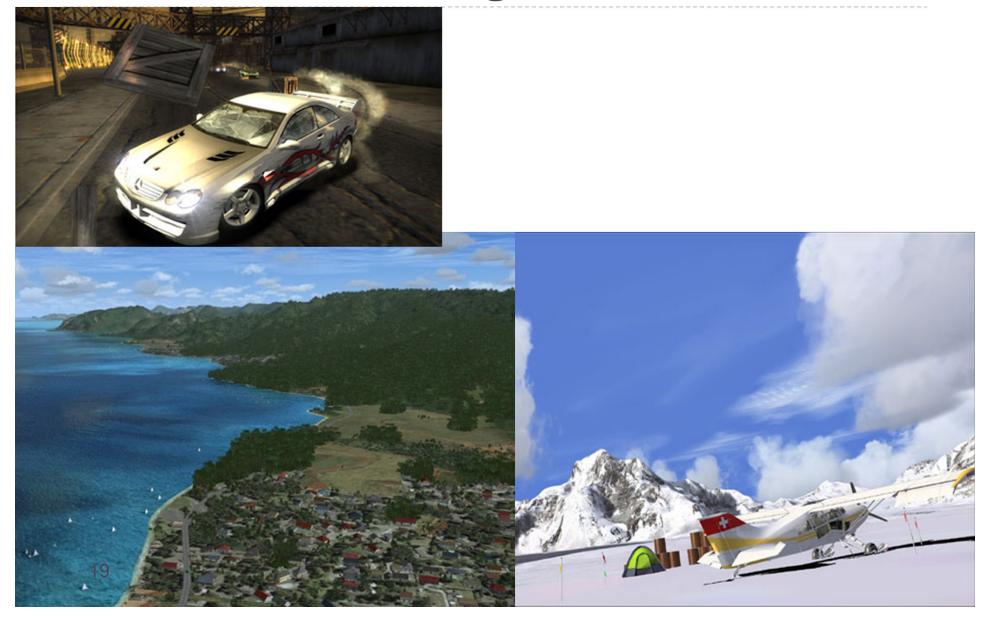
Rendering

- Synthesis of a 2D image from a 3D scene description
 - Rendering algorithm interprets data structures that represent the scene in terms of geometric primitives, textures, and lights
- ▶ 2D image is an array of pixels
 - Red, green, blue values for each pixel
- Different objectives
 - Photorealistic
 - Interactive

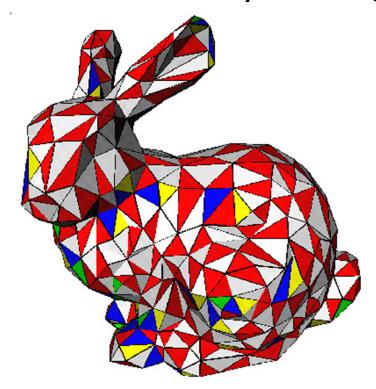

Photorealistic rendering

- Physically-based simulation of light, camera
- Shadows, realistic illumination, multiple light bounces
- Slow, minutes to hours per image
- Special effects, movies
- CSE168: Rendering Algorithms

Photorealistic rendering



Interactive rendering


- Produce images within milliseconds
- Using specialized hardware, graphics processing units (GPUs)
- Standardized APIs (OpenGL, DirectX)
- Often "as photorealistic as possible"
- Hard shadows, fake soft shadows, only single bounce of light
- Games
- ▶ CSE167

Interactive rendering

Modeling

▶ Basic 3D models consist of array of triangles

- Procedural: by writing programs
- Scanning real-world objects

Modeling

Procedural tree

Scanned statue

Basic skills:

- Vector and matrix mathematics
- Coordinate system transformations
- ▶ 3D to 2D projection
- Rasterization

- OpenGL:
 - Lighting
 - Texturing
 - Shading
 - ▶ GL Shading Language

- High Level Concepts:
 - Scene Graph
 - Culling
 - Parametric Curves and Surfaces
 - Procedural Modeling

- Visual Effects:
 - Environment Mapping
 - Shadows
 - Deferred Rendering

Examples of Previous Final Projects

- https://www.youtube.com/watch?v=rE3NC5ZwdSk
- https://www.youtube.com/watch?v=cbaKCi14uCw
- https://www.youtube.com/watch?v=LYgu9i7GZXE

Next Week

- Monday, Sept. 28
 - ▶ Homework discussion by Dylan on 3-3:50pm
 - Pepper Canyon Hall (PCYNH) 121
- Tuesday Sept. 29 + Thursday Oct. I
 - Lecture 9:30-10:50am, Center Hall 105
- Friday Oct. 2
 - Homework project I due at Ipm
 - Demonstrate in CSE basement labs 260 or 270
 - Add your name to list on whiteboard in room 260