
CSE 167:
Introduction to Computer Graphics
Lecture #17: Deferred Rendering

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2018



Announcements
 TA evaluations
 CAPE evaluation
 Final project blog entries due:

 Tonight , Dec 4th at 11:59pm
 Tuesday, Dec 11th at 11:59pm

 Video due (added to playlist):
 Thursday, Dec 13th at 3pm 

2



Lecture Overview
 Deferred Rendering
 Deferred Shading
 Bloom and Glow
 Screen Space Ambient Occlusion

3



Deferred Rendering
 Opposite to Forward Rendering, which is the way we 

have rendered with OpenGL so far
 Deferred rendering describes post-processing algorithms
 Requires two-pass rendering
 First pass:

 Scene is rendered as usual by projecting 3D primitives to 2D screen 
space.

 Additionally, an off-screen buffer (G-buffer) is populated with 
additional information about the geometry elements at every pixel
 Examples: normals, diffuse shading color, position, texture coordinates

 Second pass:
 An algorithm, typically implemented as a shader, processes the G-

buffer to generate the final image in the back buffer

4



Deferred Shading
 Postpones shading calculations for a fragment until its 

visibility is completely determined
 Only visible fragments are shaded

 Algorithm:
 Fill a set of buffers with common data, such as diffuse 

texture,  normals, material properties

 Render lights with limited extent and use data from the 
buffers for the lighting computation

 Advantages:
 Decouples lighting from geometry rendering

 Several lights can be applied with a single draw call. E.g.,
>1000 lights can be rendered at 60 fps

 Disadvantages:
 More expensive (memory, bandwidth, shader instructions)

 Tutorial:
 http://gamedevs.org/uploads/deferred-shading-tutorial.pdf

5

Particle system with 
glowing particles.

Source: Humus 3D

http://gamedevs.org/uploads/deferred-shading-tutorial.pdf


Lecture Overview
 Deferred Rendering Techniques
 Deferred Shading
 Bloom and Glow
 Screen Space Ambient Occlusion

6



Bloom Effect

 Computer displays have limited dynamic range
 Bloom gives a scene a look of bright lighting and overexposure
 Provides visual cues about brightness and atmosphere
 Caused by light scattering in atmosphere, or within our eyes

 ss
7

Left: no bloom, right: bloom. Source: http://jmonkeyengine.org



Bloom Shader
 Step 1: Extract all highlights of the rendered 

scene, superimpose them and make them 
more intense
 Operates on G-buffer
 Often done with G-buffer smaller (lower 

resolution) than frame buffer
 Highlights found by thresholding luminance

 Step 2: Blur off-screen buffer, e.g., using 
Gaussian blur

 Step 3: Composite off-screen buffer with 
back buffer

8

Bloom shader render steps.
Source: http://www.klopfenstein.net



Glow vs. Bloom
 Bloom filter looks for highlights automatically, based on a 

threshold value
 If you want to have more control over what glows and 

does not glow, a glow filter is needed
 Glow filter adds an additional step to Bloom filter: instead 

of thresholding, only the glowing objects are rendered
 Render passes:
 Render entire scene back buffer
 Render only glowing objects to a smaller off-screen glow buffer
 Apply a bloom pixel shader to glow buffer
 Compose back buffer and glow buffer together

9



Video: Glowing Lava
 https://www.youtube.com/watch?v=hmsMk-skquI

10

https://www.youtube.com/watch?v=hmsMk-skquI


References
 Bloom Tutorial
 http://prideout.net/archive/bloom/

 GPU Gems Chapter on Glow
 http://developer.download.nvidia.com/books/HTML/gpuge

ms/gpugems_ch21.html

 GLSL Shader for Gaussian Blur
 http://www.ozone3d.net/tutorials/image_filtering_p2.php

11

http://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch21.html
http://www.ozone3d.net/tutorials/image_filtering_p2.php


Lecture Overview
 Deferred Rendering Techniques
 Deferred Shading
 Glow
 Screen Space Ambient Occlusion

12



Screen Space Ambient Occlusion (SSAO)
 “Screen Space”  deferred rendering approach
 Approximates ambient occlusion in real time
 Developed by Vladimir Kajalin (Crytek)
 First use in PC game Crysis (2007)

13

SSAO component



Ambient Occlusion
 Crude approximation of global illumination
 Often referred to as "sky light"
 Global method (not local like Phong shading)
 Illumination at each point is a function of other geometry in 

the scene

 Appearance is similar to what objects appear as on an 
overcast day
 Assumption: concave objects are hit by less light than convex 

ones

14



Basic SSAO Algorithm
 First pass:
 Render scene normally and write z values to G-buffer’s alpha channel 

 Second pass:
 Pixel shader samples depth values around the processed fragment and 

computes amount of occlusion, stores result in red channel
 Occlusion depends on depth difference between sampled fragment 

and currently processed fragment

15

Ambient occlusion values in red color channel
Source: www.gamerendering.com



SSAO With Normals
 First pass:
 Render scene normally and copy z values to G-buffer’s alpha 

channel and scene normals to RGB channels

 Second pass:
 Use normals and z-values to compute occlusion between 

current pixel and several samples around that pixel

16
With SSAONo SSAO



SSAO Discussion
 Advantages:
 Deferred rendering algorithm: independent of scene complexity
 No pre-processing, no memory allocation in RAM
 Works with dynamic scenes
 Works in the same way for every pixel
 No CPU usage: executed completely on GPU

 Disadvantages:
 Local and view-dependent (dependent on adjacent texel depths)
 Hard to correctly smooth/blur out noise without interfering with depth 

discontinuities, such as object edges, which should not be smoothed out

17



SSAO References
 Nvidia’s documentation
 http://developer.download.nvidia.com/SDK/10.5/direct3d/Sourc

e/ScreenSpaceAO/doc/ScreenSpaceAO.pdf

18

http://developer.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf


Lecture Overview
 Particle Systems
 Collision Detection
 Bump Mapping

19



Particle Systems

20



Particle Systems
 Used for:
 Fire/sparks
 Rain/snow
 Water spray
 Explosions
 Galaxies

21



Internal Representation
 Particle system is collection of a number of individual elements (particles)
 Controls a set of particles which act autonomously but share some 

common attributes
 Particle Emitter: Source of all new particles

 3D point
 Polygon mesh: particles’ initial velocity vector is normal to surface

 Particle attributes:
 position (3D)
 velocity (vector: speed and direction)
 color + opacity
 lifetime
 size
 shape
 weight

22



Dynamic Updates
 Particles change position and/or attributes with time
 Initial particle attributes often created with random numbers
 Frame update:
 Parameters: simulation of particles, can include collisions with geometry

 Forces (gravity, wind, etc) accelerate a particle
 Acceleration changes velocity
 Velocity changes position

 Rendering: 
 GL_POINTS
 GL_POINT_SPRITE
 Point shader

23

Source: http://www.particlesystems.org/



Point Rendering – Vertex Shader
uniform mat4 u_MVPMatrix;
uniform vec3 u_cameraPos;

// Constants (tweakable):
const float minPointScale = 0.1;
const float maxPointScale = 0.7;
const float maxDistance = 100.0;

void main()
{

// Calculate point scale based on distance from the viewer
// to compensate for the fact that gl_PointSize is the point
// size in rasterized points / pixels.
float cameraDist = distance(a_position_size.xyz, u_cameraPos);
float pointScale = 1.0 - (cameraDist / maxDistance);
pointScale = max(pointScale, minPointScale);
pointScale = min(pointScale, maxPointScale);

// Set GL globals and forward the color:
gl_Position = u_MVPMatrix * vec4(a_position_size.xyz, 1.0);
gl_PointSize = a_position_size.w * pointScale;
v_color = a_color;

}

24



Demo
 Particle system in WebGL:
 http://nullprogram.com/webgl-particles/

25

http://nullprogram.com/webgl-particles/


References
 Tutorial with source code by Bartlomiej Filipek, 2014:

 http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-
Renderer

 Articles with source code:
 Jeff Lander: “The Ocean Spray in Your Face”, Game Developer, July 1998

 http://www.darwin3d.com/gamedev/articles/col0798.pdf

 John Van Der Burg: “Building an Advanced Particle System”, Gamasutra, 
June 2000
 http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php

 Founding scientific paper:
 Reeves: “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”, 

ACM Transactions on Graphics (TOG) Volume 2 Issue 2,  April 1983
 https://www.evl.uic.edu/aej/527/papers/Reeves1983.pdf

26

http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-Renderer
http://www.darwin3d.com/gamedev/articles/col0798.pdf
http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php
https://www.evl.uic.edu/aej/527/papers/Reeves1983.pdf


Collison Detection

27



Collision Detection
 Goals:
 Physically correct simulation 

of collision of objects
 Not covered here

 Determine if two objects 
intersect

 Slow calculation because of 
exponential growth O(n2):
 # collision tests = n*(n-1)/2

28



Intersection Testing
 Purpose:
 Keep moving objects on the ground
 Keep moving objects from going through walls, each other, etc.

 Goal: 
 Believable system, does not have to be physically correct

 Priority:
 Computationally inexpensive

 Typical approach:
 Spatial partitioning
 Object simplified for collision detection by one or a few

 Points

 Spheres

 Axis aligned bounding box (AABB)

 Pairwise checks between points/spheres/AABBs and static geometry

29



Sweep and Prune Algorithm
 Sorts bounding boxes
 Not intuitively obvious how to sort bounding boxes in 3-space
 Dimension reduction approach:
 Project each 3-dimensional bounding box onto the x,y and z axes
 Find overlaps in 1D: a pair of bounding boxes can overlap if and only if 

their intervals overlap in all three dimensions
 Construct 3 lists, one for each dimension
 Each list contains start/end point of intervals corresponding to that dimension
 By sorting these lists, we can determine which intervals overlap
 Reduce sorting time by keeping sorted lists from previous frame, changing 

only the interval endpoints

30



Collision Map (CM)
 2D map with information 

about where objects can go 
and what happens when they 
go there

 Colors indicate different 
types of locations

 Map can be computed from 
3D model, or hand drawn 
with paint program

 Granularity: defines how 
much area (in object space) 
one CM pixel represents

31


	CSE 167:�Introduction to Computer Graphics�Lecture #17: Deferred Rendering
	Announcements
	Lecture Overview
	Deferred Rendering
	Deferred Shading
	Lecture Overview
	Bloom Effect
	Bloom Shader
	Glow vs. Bloom
	Video: Glowing Lava
	References
	Lecture Overview
	Screen Space Ambient Occlusion (SSAO)
	Ambient Occlusion
	Basic SSAO Algorithm
	SSAO With Normals
	SSAO Discussion
	SSAO References
	Lecture Overview
	Particle Systems
	Particle Systems
	Internal Representation
	Dynamic Updates
	Point Rendering – Vertex Shader
	Demo
	References
	Collison Detection
	Collision Detection
	Intersection Testing
	Sweep and Prune Algorithm
	Collision Map (CM)

