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Announcements
 TA evaluations
 CAPE evaluation
 Final project blog entries due:

 Tonight , Dec 4th at 11:59pm
 Tuesday, Dec 11th at 11:59pm

 Video due (added to playlist):
 Thursday, Dec 13th at 3pm 
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Lecture Overview
 Deferred Rendering
 Deferred Shading
 Bloom and Glow
 Screen Space Ambient Occlusion
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Deferred Rendering
 Opposite to Forward Rendering, which is the way we 

have rendered with OpenGL so far
 Deferred rendering describes post-processing algorithms
 Requires two-pass rendering
 First pass:

 Scene is rendered as usual by projecting 3D primitives to 2D screen 
space.

 Additionally, an off-screen buffer (G-buffer) is populated with 
additional information about the geometry elements at every pixel
 Examples: normals, diffuse shading color, position, texture coordinates

 Second pass:
 An algorithm, typically implemented as a shader, processes the G-

buffer to generate the final image in the back buffer
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Deferred Shading
 Postpones shading calculations for a fragment until its 

visibility is completely determined
 Only visible fragments are shaded

 Algorithm:
 Fill a set of buffers with common data, such as diffuse 

texture,  normals, material properties

 Render lights with limited extent and use data from the 
buffers for the lighting computation

 Advantages:
 Decouples lighting from geometry rendering

 Several lights can be applied with a single draw call. E.g.,
>1000 lights can be rendered at 60 fps

 Disadvantages:
 More expensive (memory, bandwidth, shader instructions)

 Tutorial:
 http://gamedevs.org/uploads/deferred-shading-tutorial.pdf
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Particle system with 
glowing particles.

Source: Humus 3D

http://gamedevs.org/uploads/deferred-shading-tutorial.pdf


Lecture Overview
 Deferred Rendering Techniques
 Deferred Shading
 Bloom and Glow
 Screen Space Ambient Occlusion
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Bloom Effect

 Computer displays have limited dynamic range
 Bloom gives a scene a look of bright lighting and overexposure
 Provides visual cues about brightness and atmosphere
 Caused by light scattering in atmosphere, or within our eyes

 ss
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Left: no bloom, right: bloom. Source: http://jmonkeyengine.org



Bloom Shader
 Step 1: Extract all highlights of the rendered 

scene, superimpose them and make them 
more intense
 Operates on G-buffer
 Often done with G-buffer smaller (lower 

resolution) than frame buffer
 Highlights found by thresholding luminance

 Step 2: Blur off-screen buffer, e.g., using 
Gaussian blur

 Step 3: Composite off-screen buffer with 
back buffer
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Bloom shader render steps.
Source: http://www.klopfenstein.net



Glow vs. Bloom
 Bloom filter looks for highlights automatically, based on a 

threshold value
 If you want to have more control over what glows and 

does not glow, a glow filter is needed
 Glow filter adds an additional step to Bloom filter: instead 

of thresholding, only the glowing objects are rendered
 Render passes:
 Render entire scene back buffer
 Render only glowing objects to a smaller off-screen glow buffer
 Apply a bloom pixel shader to glow buffer
 Compose back buffer and glow buffer together
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Video: Glowing Lava
 https://www.youtube.com/watch?v=hmsMk-skquI
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https://www.youtube.com/watch?v=hmsMk-skquI


References
 Bloom Tutorial
 http://prideout.net/archive/bloom/

 GPU Gems Chapter on Glow
 http://developer.download.nvidia.com/books/HTML/gpuge

ms/gpugems_ch21.html

 GLSL Shader for Gaussian Blur
 http://www.ozone3d.net/tutorials/image_filtering_p2.php
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http://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch21.html
http://www.ozone3d.net/tutorials/image_filtering_p2.php


Lecture Overview
 Deferred Rendering Techniques
 Deferred Shading
 Glow
 Screen Space Ambient Occlusion
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Screen Space Ambient Occlusion (SSAO)
 “Screen Space”  deferred rendering approach
 Approximates ambient occlusion in real time
 Developed by Vladimir Kajalin (Crytek)
 First use in PC game Crysis (2007)
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SSAO component



Ambient Occlusion
 Crude approximation of global illumination
 Often referred to as "sky light"
 Global method (not local like Phong shading)
 Illumination at each point is a function of other geometry in 

the scene

 Appearance is similar to what objects appear as on an 
overcast day
 Assumption: concave objects are hit by less light than convex 

ones
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Basic SSAO Algorithm
 First pass:
 Render scene normally and write z values to G-buffer’s alpha channel 

 Second pass:
 Pixel shader samples depth values around the processed fragment and 

computes amount of occlusion, stores result in red channel
 Occlusion depends on depth difference between sampled fragment 

and currently processed fragment
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Ambient occlusion values in red color channel
Source: www.gamerendering.com



SSAO With Normals
 First pass:
 Render scene normally and copy z values to G-buffer’s alpha 

channel and scene normals to RGB channels

 Second pass:
 Use normals and z-values to compute occlusion between 

current pixel and several samples around that pixel
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With SSAONo SSAO



SSAO Discussion
 Advantages:
 Deferred rendering algorithm: independent of scene complexity
 No pre-processing, no memory allocation in RAM
 Works with dynamic scenes
 Works in the same way for every pixel
 No CPU usage: executed completely on GPU

 Disadvantages:
 Local and view-dependent (dependent on adjacent texel depths)
 Hard to correctly smooth/blur out noise without interfering with depth 

discontinuities, such as object edges, which should not be smoothed out
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SSAO References
 Nvidia’s documentation
 http://developer.download.nvidia.com/SDK/10.5/direct3d/Sourc

e/ScreenSpaceAO/doc/ScreenSpaceAO.pdf
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http://developer.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf


Lecture Overview
 Particle Systems
 Collision Detection
 Bump Mapping
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Particle Systems
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Particle Systems
 Used for:
 Fire/sparks
 Rain/snow
 Water spray
 Explosions
 Galaxies
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Internal Representation
 Particle system is collection of a number of individual elements (particles)
 Controls a set of particles which act autonomously but share some 

common attributes
 Particle Emitter: Source of all new particles

 3D point
 Polygon mesh: particles’ initial velocity vector is normal to surface

 Particle attributes:
 position (3D)
 velocity (vector: speed and direction)
 color + opacity
 lifetime
 size
 shape
 weight

22



Dynamic Updates
 Particles change position and/or attributes with time
 Initial particle attributes often created with random numbers
 Frame update:
 Parameters: simulation of particles, can include collisions with geometry

 Forces (gravity, wind, etc) accelerate a particle
 Acceleration changes velocity
 Velocity changes position

 Rendering: 
 GL_POINTS
 GL_POINT_SPRITE
 Point shader

23

Source: http://www.particlesystems.org/



Point Rendering – Vertex Shader
uniform mat4 u_MVPMatrix;
uniform vec3 u_cameraPos;

// Constants (tweakable):
const float minPointScale = 0.1;
const float maxPointScale = 0.7;
const float maxDistance = 100.0;

void main()
{

// Calculate point scale based on distance from the viewer
// to compensate for the fact that gl_PointSize is the point
// size in rasterized points / pixels.
float cameraDist = distance(a_position_size.xyz, u_cameraPos);
float pointScale = 1.0 - (cameraDist / maxDistance);
pointScale = max(pointScale, minPointScale);
pointScale = min(pointScale, maxPointScale);

// Set GL globals and forward the color:
gl_Position = u_MVPMatrix * vec4(a_position_size.xyz, 1.0);
gl_PointSize = a_position_size.w * pointScale;
v_color = a_color;

}
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Demo
 Particle system in WebGL:
 http://nullprogram.com/webgl-particles/
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http://nullprogram.com/webgl-particles/


References
 Tutorial with source code by Bartlomiej Filipek, 2014:

 http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-
Renderer

 Articles with source code:
 Jeff Lander: “The Ocean Spray in Your Face”, Game Developer, July 1998

 http://www.darwin3d.com/gamedev/articles/col0798.pdf

 John Van Der Burg: “Building an Advanced Particle System”, Gamasutra, 
June 2000
 http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php

 Founding scientific paper:
 Reeves: “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”, 

ACM Transactions on Graphics (TOG) Volume 2 Issue 2,  April 1983
 https://www.evl.uic.edu/aej/527/papers/Reeves1983.pdf
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http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-Renderer
http://www.darwin3d.com/gamedev/articles/col0798.pdf
http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php
https://www.evl.uic.edu/aej/527/papers/Reeves1983.pdf


Collison Detection
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Collision Detection
 Goals:
 Physically correct simulation 

of collision of objects
 Not covered here

 Determine if two objects 
intersect

 Slow calculation because of 
exponential growth O(n2):
 # collision tests = n*(n-1)/2

28



Intersection Testing
 Purpose:
 Keep moving objects on the ground
 Keep moving objects from going through walls, each other, etc.

 Goal: 
 Believable system, does not have to be physically correct

 Priority:
 Computationally inexpensive

 Typical approach:
 Spatial partitioning
 Object simplified for collision detection by one or a few

 Points

 Spheres

 Axis aligned bounding box (AABB)

 Pairwise checks between points/spheres/AABBs and static geometry
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Sweep and Prune Algorithm
 Sorts bounding boxes
 Not intuitively obvious how to sort bounding boxes in 3-space
 Dimension reduction approach:
 Project each 3-dimensional bounding box onto the x,y and z axes
 Find overlaps in 1D: a pair of bounding boxes can overlap if and only if 

their intervals overlap in all three dimensions
 Construct 3 lists, one for each dimension
 Each list contains start/end point of intervals corresponding to that dimension
 By sorting these lists, we can determine which intervals overlap
 Reduce sorting time by keeping sorted lists from previous frame, changing 

only the interval endpoints
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Collision Map (CM)
 2D map with information 

about where objects can go 
and what happens when they 
go there

 Colors indicate different 
types of locations

 Map can be computed from 
3D model, or hand drawn 
with paint program

 Granularity: defines how 
much area (in object space) 
one CM pixel represents
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