
CSE 167:
Introduction to Computer Graphics
Lecture #17: Deferred Rendering

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2018

Announcements
 TA evaluations
 CAPE evaluation
 Final project blog entries due:

 Tonight , Dec 4th at 11:59pm
 Tuesday, Dec 11th at 11:59pm

 Video due (added to playlist):
 Thursday, Dec 13th at 3pm

2

Lecture Overview
 Deferred Rendering
 Deferred Shading
 Bloom and Glow
 Screen Space Ambient Occlusion

3

Deferred Rendering
 Opposite to Forward Rendering, which is the way we

have rendered with OpenGL so far
 Deferred rendering describes post-processing algorithms
 Requires two-pass rendering
 First pass:

 Scene is rendered as usual by projecting 3D primitives to 2D screen
space.

 Additionally, an off-screen buffer (G-buffer) is populated with
additional information about the geometry elements at every pixel
 Examples: normals, diffuse shading color, position, texture coordinates

 Second pass:
 An algorithm, typically implemented as a shader, processes the G-

buffer to generate the final image in the back buffer

4

Deferred Shading
 Postpones shading calculations for a fragment until its

visibility is completely determined
 Only visible fragments are shaded

 Algorithm:
 Fill a set of buffers with common data, such as diffuse

texture, normals, material properties

 Render lights with limited extent and use data from the
buffers for the lighting computation

 Advantages:
 Decouples lighting from geometry rendering

 Several lights can be applied with a single draw call. E.g.,
>1000 lights can be rendered at 60 fps

 Disadvantages:
 More expensive (memory, bandwidth, shader instructions)

 Tutorial:
 http://gamedevs.org/uploads/deferred-shading-tutorial.pdf

5

Particle system with
glowing particles.

Source: Humus 3D

http://gamedevs.org/uploads/deferred-shading-tutorial.pdf

Lecture Overview
 Deferred Rendering Techniques
 Deferred Shading
 Bloom and Glow
 Screen Space Ambient Occlusion

6

Bloom Effect

 Computer displays have limited dynamic range
 Bloom gives a scene a look of bright lighting and overexposure
 Provides visual cues about brightness and atmosphere
 Caused by light scattering in atmosphere, or within our eyes

 ss
7

Left: no bloom, right: bloom. Source: http://jmonkeyengine.org

Bloom Shader
 Step 1: Extract all highlights of the rendered

scene, superimpose them and make them
more intense
 Operates on G-buffer
 Often done with G-buffer smaller (lower

resolution) than frame buffer
 Highlights found by thresholding luminance

 Step 2: Blur off-screen buffer, e.g., using
Gaussian blur

 Step 3: Composite off-screen buffer with
back buffer

8

Bloom shader render steps.
Source: http://www.klopfenstein.net

Glow vs. Bloom
 Bloom filter looks for highlights automatically, based on a

threshold value
 If you want to have more control over what glows and

does not glow, a glow filter is needed
 Glow filter adds an additional step to Bloom filter: instead

of thresholding, only the glowing objects are rendered
 Render passes:
 Render entire scene back buffer
 Render only glowing objects to a smaller off-screen glow buffer
 Apply a bloom pixel shader to glow buffer
 Compose back buffer and glow buffer together

9

Video: Glowing Lava
 https://www.youtube.com/watch?v=hmsMk-skquI

10

https://www.youtube.com/watch?v=hmsMk-skquI

References
 Bloom Tutorial
 http://prideout.net/archive/bloom/

 GPU Gems Chapter on Glow
 http://developer.download.nvidia.com/books/HTML/gpuge

ms/gpugems_ch21.html

 GLSL Shader for Gaussian Blur
 http://www.ozone3d.net/tutorials/image_filtering_p2.php

11

http://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch21.html
http://www.ozone3d.net/tutorials/image_filtering_p2.php

Lecture Overview
 Deferred Rendering Techniques
 Deferred Shading
 Glow
 Screen Space Ambient Occlusion

12

Screen Space Ambient Occlusion (SSAO)
 “Screen Space”  deferred rendering approach
 Approximates ambient occlusion in real time
 Developed by Vladimir Kajalin (Crytek)
 First use in PC game Crysis (2007)

13

SSAO component

Ambient Occlusion
 Crude approximation of global illumination
 Often referred to as "sky light"
 Global method (not local like Phong shading)
 Illumination at each point is a function of other geometry in

the scene

 Appearance is similar to what objects appear as on an
overcast day
 Assumption: concave objects are hit by less light than convex

ones

14

Basic SSAO Algorithm
 First pass:
 Render scene normally and write z values to G-buffer’s alpha channel

 Second pass:
 Pixel shader samples depth values around the processed fragment and

computes amount of occlusion, stores result in red channel
 Occlusion depends on depth difference between sampled fragment

and currently processed fragment

15

Ambient occlusion values in red color channel
Source: www.gamerendering.com

SSAO With Normals
 First pass:
 Render scene normally and copy z values to G-buffer’s alpha

channel and scene normals to RGB channels

 Second pass:
 Use normals and z-values to compute occlusion between

current pixel and several samples around that pixel

16
With SSAONo SSAO

SSAO Discussion
 Advantages:
 Deferred rendering algorithm: independent of scene complexity
 No pre-processing, no memory allocation in RAM
 Works with dynamic scenes
 Works in the same way for every pixel
 No CPU usage: executed completely on GPU

 Disadvantages:
 Local and view-dependent (dependent on adjacent texel depths)
 Hard to correctly smooth/blur out noise without interfering with depth

discontinuities, such as object edges, which should not be smoothed out

17

SSAO References
 Nvidia’s documentation
 http://developer.download.nvidia.com/SDK/10.5/direct3d/Sourc

e/ScreenSpaceAO/doc/ScreenSpaceAO.pdf

18

http://developer.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf

Lecture Overview
 Particle Systems
 Collision Detection
 Bump Mapping

19

Particle Systems

20

Particle Systems
 Used for:
 Fire/sparks
 Rain/snow
 Water spray
 Explosions
 Galaxies

21

Internal Representation
 Particle system is collection of a number of individual elements (particles)
 Controls a set of particles which act autonomously but share some

common attributes
 Particle Emitter: Source of all new particles

 3D point
 Polygon mesh: particles’ initial velocity vector is normal to surface

 Particle attributes:
 position (3D)
 velocity (vector: speed and direction)
 color + opacity
 lifetime
 size
 shape
 weight

22

Dynamic Updates
 Particles change position and/or attributes with time
 Initial particle attributes often created with random numbers
 Frame update:
 Parameters: simulation of particles, can include collisions with geometry

 Forces (gravity, wind, etc) accelerate a particle
 Acceleration changes velocity
 Velocity changes position

 Rendering:
 GL_POINTS
 GL_POINT_SPRITE
 Point shader

23

Source: http://www.particlesystems.org/

Point Rendering – Vertex Shader
uniform mat4 u_MVPMatrix;
uniform vec3 u_cameraPos;

// Constants (tweakable):
const float minPointScale = 0.1;
const float maxPointScale = 0.7;
const float maxDistance = 100.0;

void main()
{

// Calculate point scale based on distance from the viewer
// to compensate for the fact that gl_PointSize is the point
// size in rasterized points / pixels.
float cameraDist = distance(a_position_size.xyz, u_cameraPos);
float pointScale = 1.0 - (cameraDist / maxDistance);
pointScale = max(pointScale, minPointScale);
pointScale = min(pointScale, maxPointScale);

// Set GL globals and forward the color:
gl_Position = u_MVPMatrix * vec4(a_position_size.xyz, 1.0);
gl_PointSize = a_position_size.w * pointScale;
v_color = a_color;

}

24

Demo
 Particle system in WebGL:
 http://nullprogram.com/webgl-particles/

25

http://nullprogram.com/webgl-particles/

References
 Tutorial with source code by Bartlomiej Filipek, 2014:

 http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-
Renderer

 Articles with source code:
 Jeff Lander: “The Ocean Spray in Your Face”, Game Developer, July 1998

 http://www.darwin3d.com/gamedev/articles/col0798.pdf

 John Van Der Burg: “Building an Advanced Particle System”, Gamasutra,
June 2000
 http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php

 Founding scientific paper:
 Reeves: “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”,

ACM Transactions on Graphics (TOG) Volume 2 Issue 2, April 1983
 https://www.evl.uic.edu/aej/527/papers/Reeves1983.pdf

26

http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-Renderer
http://www.darwin3d.com/gamedev/articles/col0798.pdf
http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php
https://www.evl.uic.edu/aej/527/papers/Reeves1983.pdf

Collison Detection

27

Collision Detection
 Goals:
 Physically correct simulation

of collision of objects
 Not covered here

 Determine if two objects
intersect

 Slow calculation because of
exponential growth O(n2):
 # collision tests = n*(n-1)/2

28

Intersection Testing
 Purpose:
 Keep moving objects on the ground
 Keep moving objects from going through walls, each other, etc.

 Goal:
 Believable system, does not have to be physically correct

 Priority:
 Computationally inexpensive

 Typical approach:
 Spatial partitioning
 Object simplified for collision detection by one or a few

 Points

 Spheres

 Axis aligned bounding box (AABB)

 Pairwise checks between points/spheres/AABBs and static geometry

29

Sweep and Prune Algorithm
 Sorts bounding boxes
 Not intuitively obvious how to sort bounding boxes in 3-space
 Dimension reduction approach:
 Project each 3-dimensional bounding box onto the x,y and z axes
 Find overlaps in 1D: a pair of bounding boxes can overlap if and only if

their intervals overlap in all three dimensions
 Construct 3 lists, one for each dimension
 Each list contains start/end point of intervals corresponding to that dimension
 By sorting these lists, we can determine which intervals overlap
 Reduce sorting time by keeping sorted lists from previous frame, changing

only the interval endpoints

30

Collision Map (CM)
 2D map with information

about where objects can go
and what happens when they
go there

 Colors indicate different
types of locations

 Map can be computed from
3D model, or hand drawn
with paint program

 Granularity: defines how
much area (in object space)
one CM pixel represents

31

	CSE 167:�Introduction to Computer Graphics�Lecture #17: Deferred Rendering
	Announcements
	Lecture Overview
	Deferred Rendering
	Deferred Shading
	Lecture Overview
	Bloom Effect
	Bloom Shader
	Glow vs. Bloom
	Video: Glowing Lava
	References
	Lecture Overview
	Screen Space Ambient Occlusion (SSAO)
	Ambient Occlusion
	Basic SSAO Algorithm
	SSAO With Normals
	SSAO Discussion
	SSAO References
	Lecture Overview
	Particle Systems
	Particle Systems
	Internal Representation
	Dynamic Updates
	Point Rendering – Vertex Shader
	Demo
	References
	Collison Detection
	Collision Detection
	Intersection Testing
	Sweep and Prune Algorithm
	Collision Map (CM)

