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Announcements

� Thursday in-class: Midterm

� Can include material up to and including today’s lecture

� Project 3 late grading deadline this Friday

� Grading starts at 12:30pm, ends at 1:30pm
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Lecture Overview

� OpenGL Light Sources

� Directional Lights

� Point Lights

� Spot Lights
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Light Sources

� Real light sources can have complex properties

� Geometric area over which light is produced

� Anisotropy (directionally dependent)

� Reflective surfaces act as light sources (indirect light)

� OpenGL uses a drastically simplified model to allow 
real-time rendering
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OpenGL Light Sources

� At each point on surfaces we need to know

� Direction of incoming light (the L vector)

� Intensity of incoming light (the cl values)

� Standard light sources in OpenGL

� Directional: from a specific direction 

� Point light source: from a specific point

� Spotlight: from a specific point with intensity that depends on 
direction
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Lecture Overview
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Directional Light

� Light from a distant source

� Light rays are parallel

� Direction and intensity are the same everywhere 

� As if the source were infinitely far away

� Good approximation of sunlight

� Specified by a unit length direction vector, and a color

Light source

Receiving surface
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Lecture Overview

� OpenGL Light Sources

� Directional Lights

� Point Lights

� Spot Lights
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Point Lights

� Similar to light bulbs

� Infinitely small point radiates light equally in all directions

� Light vector varies across receiving surface

� What is light intensity over distance proportional to?

� Intensity drops off proportionally to the inverse square of the 
distance from the light

� Reason for inverse square falloff: 
Surface area A of sphere:

A = 4 π r2
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Point Lights in Theory
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At any point v on the 

surface:



Point Lights in OpenGL

� OpenGL model for distance attenuation:

� Attenuation parameters:

� kc = constant attenuation, default: 1

� kl = linear attenuation, default: 0

� kq = quadratic attenuation, default: 0

� Default: no attenuation: cl=csrc
� Change attenuation parameters with:

� GL_CONSTANT_ATTENUATION

� GL_LINEAR_ATTENUATION

� GL_QUADRATIC_ATTENUATION

cl =
csrc

kc + kl p − v + kq p − v
2
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Lecture Overview

� OpenGL Light Sources

� Directional Lights

� Point Lights

� Spot Lights
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� Like point source, but intensity depends on direction

Parameters

� Position: location of light source

� Spot direction: center axis of light source

� Falloff parameters:

� Beam width (cone angle)

� The way the light tapers off at the edges of the beam (cosine 
exponent)

Spotlights
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Spotlights

Light source

Receiving surface
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Spotlights

Photograph of real spotlight Spotlights in OpenGL
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Video

� C++ OpenGL Lesson on Basic Lighting 

� http://www.youtube.com/watch?v=g_0yV7jZvGg
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Lecture Overview

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL
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Types of Shading

� Per-triangle

� Per-vertex

� Per-pixel
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Per-Triangle Shading

� A.k.a. flat shading

� Evaluate shading once per 
triangle

� Advantage

� Fast

� Disadvantage

� Faceted appearance
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Per-Vertex Shading

� Known as Gouraud shading 
(Henri Gouraud, 1971)

� Interpolates vertex colors 
across triangles

� Advantages
� Fast

� Smoother surface appearance 
than with flat shading

� Disadvantage
� Problems with small highlights
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Per-Pixel Shading

� A.k.a. Phong Interpolation (not to be 
confused with Phong Illumination Model)

� Rasterizer interpolates normals (instead of 
colors) across triangles

� Illumination model is evaluated at each pixel

� Simulates shading with normals of a curved 
surface

� Advantage

� Higher quality than Gouraud shading

� Disadvantage

� Slow
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Gouraud vs. Per-Pixel Shading

� Gouraud shading has problems with highlights when 
polygons are large

� More triangles improve the result, but reduce frame rate

Gouraud Per-Pixel
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Lecture Overview

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL
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Shading with Fixed-Function Pipeline

� Fixed-function pipeline only allows Gouraud (per-
vertex) shading

� We need to provide a normal vector for each vertex
� Shading is performed in camera space

� Position and direction of light sources are transformed by 
GL_MODELVIEW matrix

� If light sources should be in object space:
� Set GL_MODELVIEW to desired object-to-camera 
transformation

� Use object space coordinates for light positions

� More information:
� http://glprogramming.com/red/chapter05.html

� http://www.falloutsoftware.com/tutorials/gl/gl8.htm
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Tips for Transforming Normals

� If you need to (manually) transform geometry by a 
transformation matrix M, which includes shearing or scaling:

� Transforming the normals with M will not work: transformed normals
are no longer perpendicular to surfaces

� Solution: transform the normals differently:

� Either transform the end points of the normal vectors separately

� Or transform normals with

� OpenGL does this automatically if the following command is 
used:

� glEnable(GL_NORMALIZE)

� More details on-line at:

� http://www.oocities.com/vmelkon/transformingnormals.html
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Programmable Shaders in OpenGL

� Initially, OpenGL only had a fixed-function pipeline for 
shading

� Programmers wanted more flexibility, similar to 
programmable shaders in raytracing software (term 
“shader” first introduced by Pixar in 1988)

� First shading languages came out in 2002: 
� Cg (C for Graphics, created by Nvidia)

� HLSL (High Level Shader Language, created by Microsoft)

� They supported:
� Fragment shaders: allowed per-pixel shading

� Vertex shaders: allowed modification of geometry
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Programmable Shaders in OpenGL

� OpenGL 2.0 supported the OpenGL Shading 
Language (GLSL) in 2003

� Geometry shaders were added in OpenGL 3.2

� Tessellation shaders were added in OpenGL 4.0

� Programmable shaders allow real-time: 
Shadows, environment mapping, per-pixel lighting, 
bump mapping, parallax bump mapping, HDR, etc.
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Demo

� NVIDIA Froggy
� http://www.nvidia.com/coolstuff/demos#!/froggy

� Bump mapping shader for Froggy’s skin

� Physically-based lighting model simulating sub-surface scattering

� Supersampling for scene anti-aliasing

� Raytracing shader for irises to simulate refraction for wet and 
shiny eyes

� Dynamically-generated lights and shadows
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