
CSE 167:

Introduction to Computer Graphics

Lecture #7: Lights

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Spring Quarter 2015



Announcements

� Thursday in-class: Midterm

� Can include material up to and including today’s lecture

� Project 3 late grading deadline this Friday

� Grading starts at 12:30pm, ends at 1:30pm

2



Lecture Overview

� OpenGL Light Sources

� Directional Lights

� Point Lights

� Spot Lights

3



Light Sources

� Real light sources can have complex properties

� Geometric area over which light is produced

� Anisotropy (directionally dependent)

� Reflective surfaces act as light sources (indirect light)

� OpenGL uses a drastically simplified model to allow 
real-time rendering

4



OpenGL Light Sources

� At each point on surfaces we need to know

� Direction of incoming light (the L vector)

� Intensity of incoming light (the cl values)

� Standard light sources in OpenGL

� Directional: from a specific direction 

� Point light source: from a specific point

� Spotlight: from a specific point with intensity that depends on 
direction

5



Lecture Overview

� OpenGL Light Sources

� Directional Lights

� Point Lights

� Spot Lights

6



Directional Light

� Light from a distant source

� Light rays are parallel

� Direction and intensity are the same everywhere 

� As if the source were infinitely far away

� Good approximation of sunlight

� Specified by a unit length direction vector, and a color

Light source

Receiving surface

7



Lecture Overview

� OpenGL Light Sources

� Directional Lights

� Point Lights

� Spot Lights

8



Point Lights

� Similar to light bulbs

� Infinitely small point radiates light equally in all directions

� Light vector varies across receiving surface

� What is light intensity over distance proportional to?

� Intensity drops off proportionally to the inverse square of the 
distance from the light

� Reason for inverse square falloff: 
Surface area A of sphere:

A = 4 π r2

9



Point Lights in Theory

cl

v

p
csrc

cl

v

Light source

Receiving surface

10

At any point v on the 

surface:



Point Lights in OpenGL

� OpenGL model for distance attenuation:

� Attenuation parameters:

� kc = constant attenuation, default: 1

� kl = linear attenuation, default: 0

� kq = quadratic attenuation, default: 0

� Default: no attenuation: cl=csrc
� Change attenuation parameters with:

� GL_CONSTANT_ATTENUATION

� GL_LINEAR_ATTENUATION

� GL_QUADRATIC_ATTENUATION

cl =
csrc

kc + kl p − v + kq p − v
2

11



Lecture Overview

� OpenGL Light Sources

� Directional Lights

� Point Lights

� Spot Lights

12



� Like point source, but intensity depends on direction

Parameters

� Position: location of light source

� Spot direction: center axis of light source

� Falloff parameters:

� Beam width (cone angle)

� The way the light tapers off at the edges of the beam (cosine 
exponent)

Spotlights

13



Spotlights

Light source

Receiving surface

14



Spotlights

Photograph of real spotlight Spotlights in OpenGL

15



Video

� C++ OpenGL Lesson on Basic Lighting 

� http://www.youtube.com/watch?v=g_0yV7jZvGg

16



Lecture Overview

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

17



Types of Shading

� Per-triangle

� Per-vertex

� Per-pixel

18



Per-Triangle Shading

� A.k.a. flat shading

� Evaluate shading once per 
triangle

� Advantage

� Fast

� Disadvantage

� Faceted appearance

19



Per-Vertex Shading

� Known as Gouraud shading 
(Henri Gouraud, 1971)

� Interpolates vertex colors 
across triangles

� Advantages
� Fast

� Smoother surface appearance 
than with flat shading

� Disadvantage
� Problems with small highlights

20



Per-Pixel Shading

� A.k.a. Phong Interpolation (not to be 
confused with Phong Illumination Model)

� Rasterizer interpolates normals (instead of 
colors) across triangles

� Illumination model is evaluated at each pixel

� Simulates shading with normals of a curved 
surface

� Advantage

� Higher quality than Gouraud shading

� Disadvantage

� Slow

21

Source: Penny Rheingans, UMBC



Gouraud vs. Per-Pixel Shading

� Gouraud shading has problems with highlights when 
polygons are large

� More triangles improve the result, but reduce frame rate

Gouraud Per-Pixel

22



Lecture Overview

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

23



Shading with Fixed-Function Pipeline

� Fixed-function pipeline only allows Gouraud (per-
vertex) shading

� We need to provide a normal vector for each vertex
� Shading is performed in camera space

� Position and direction of light sources are transformed by 
GL_MODELVIEW matrix

� If light sources should be in object space:
� Set GL_MODELVIEW to desired object-to-camera 
transformation

� Use object space coordinates for light positions

� More information:
� http://glprogramming.com/red/chapter05.html

� http://www.falloutsoftware.com/tutorials/gl/gl8.htm

24



Tips for Transforming Normals

� If you need to (manually) transform geometry by a 
transformation matrix M, which includes shearing or scaling:

� Transforming the normals with M will not work: transformed normals
are no longer perpendicular to surfaces

� Solution: transform the normals differently:

� Either transform the end points of the normal vectors separately

� Or transform normals with

� OpenGL does this automatically if the following command is 
used:

� glEnable(GL_NORMALIZE)

� More details on-line at:

� http://www.oocities.com/vmelkon/transformingnormals.html

25



Lecture Overview

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

26



Programmable Shaders in OpenGL

� Initially, OpenGL only had a fixed-function pipeline for 
shading

� Programmers wanted more flexibility, similar to 
programmable shaders in raytracing software (term 
“shader” first introduced by Pixar in 1988)

� First shading languages came out in 2002: 
� Cg (C for Graphics, created by Nvidia)

� HLSL (High Level Shader Language, created by Microsoft)

� They supported:
� Fragment shaders: allowed per-pixel shading

� Vertex shaders: allowed modification of geometry

27



Programmable Shaders in OpenGL

� OpenGL 2.0 supported the OpenGL Shading 
Language (GLSL) in 2003

� Geometry shaders were added in OpenGL 3.2

� Tessellation shaders were added in OpenGL 4.0

� Programmable shaders allow real-time: 
Shadows, environment mapping, per-pixel lighting, 
bump mapping, parallax bump mapping, HDR, etc.

28



Demo

� NVIDIA Froggy
� http://www.nvidia.com/coolstuff/demos#!/froggy

� Bump mapping shader for Froggy’s skin

� Physically-based lighting model simulating sub-surface scattering

� Supersampling for scene anti-aliasing

� Raytracing shader for irises to simulate refraction for wet and 
shiny eyes

� Dynamically-generated lights and shadows

29


