
CSE 167:
Introduction to Computer Graphics
Lecture #17: Deferred Rendering

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2019

Announcements
 TA evaluations

 CAPE evaluation

 Blog #2 due tomorrow night

 No discussion on Monday

 Blog #3 due nextWednesday night

 Final project presentations next Thursday 3-6pm

2

Lecture Overview

 Deferred Rendering
 Particle Systems
 Collision Detection

3

Deferred Rendering

 Opposite to Forward Rendering, which is the way we
have rendered with OpenGL so far

 Deferred rendering describes post-processing algorithms
 Requires two-pass rendering
 First pass:

 Scene is rendered as usual by projecting 3D primitives to 2D screen
space.

 Additionally, an off-screen buffer (G-buffer) is populated with
additional information about the geometry elements at every pixel
 Examples: normals, diffuse shading color, position, texture coordinates

 Second pass:
 An algorithm, typically implemented as a shader, processes the G-

buffer to generate the final image in the back buffer

4

Deferred Shading
 Postpones shading calculations for a fragment until its

visibility is completely determined
 Only visible fragments are shaded

 Algorithm:
 Fill a set of buffers with common data, such as diffuse

texture, normals, material properties

 Render lights with limited extent and use data from the
buffers for the lighting computation

 Advantages:
 Decouples lighting from geometry rendering

 Several lights can be applied with a single draw call. E.g.,
>1000 lights can be rendered at 60 fps

 Disadvantages:
 More expensive (memory, bandwidth, shader instructions)

 Tutorial:
 http://gamedevs.org/uploads/deferred-shading-tutorial.pdf

5

Particle system with
glowing particles.

Source: Humus 3D

Deferred Lighting

 Video:
 https://www.youtube.com/watch?v=zOVsxIdANcg

6

Bloom Effect

 Computer displays have limited dynamic range

 Bloom gives a scene a look of bright lighting and overexposure

 Provides visual cues about brightness and atmosphere
 Caused by light scattering in atmosphere, or within our eyes

 ss
7

Left: no bloom, right: bloom. Source: http://jmonkeyengine.org

Bloom Shader
 Step 1: Extract all highlights of the rendered

scene, superimpose them and make them
more intense
 Operates on G-buffer

 Often done with G-buffer smaller (lower
resolution) than frame buffer

 Highlights found by thresholding luminance

 Step 2: Blur off-screen buffer, e.g., using
Gaussian blur

 Step 3: Composite off-screen buffer with
back buffer

8

Bloom shader render steps.
Source: http://www.klopfenstein.net

Glow vs. Bloom

 Bloom filter looks for highlights automatically, based on a
threshold value

 If you want to have more control over what glows and
does not glow, a glow filter is needed

 Glow filter adds an additional step to Bloom filter: instead
of thresholding, only the glowing objects are rendered

 Render passes:
 Render entire scene back buffer
 Render only glowing objects to a smaller off-screen glow buffer
 Apply a bloom pixel shader to glow buffer
 Compose back buffer and glow buffer together

9

Video: Glowing Lava

 https://www.youtube.com/watch?v=hmsMk-skquI

10

References

 Bloom Tutorial
 http://prideout.net/archive/bloom/

 GPU Gems Chapter on Glow
 http://developer.download.nvidia.com/books/HTML/gpuge

ms/gpugems_ch21.html

 GLSL Shader for Gaussian Blur
 http://www.ozone3d.net/tutorials/image_filtering_p2.php

11

Other Deferred Rendering Effects

 Demo: ReShade
 https://reshade.me
 Needs compatible app to run with

12

Lecture Overview

 Particle Systems
 Collision Detection
 Bump Mapping

13

Particle Systems

14

Particle Systems

 Used for:
 Fire/sparks
 Rain/snow
 Water spray
 Explosions
 Galaxies

15

Internal Representation
 Particle system is collection of a number of individual elements (particles)

 Controls a set of particles which act autonomously but share some
common attributes

 Particle Emitter: Source of all new particles

 3D point

 Polygon mesh: particles’ initial velocity vector is normal to surface

 Particle attributes:
 position (3D)

 velocity (vector: speed and direction)

 color + opacity

 lifetime

 size

 shape

 weight

16

Dynamic Updates
 Particles change position and/or attributes with time

 Initial particle attributes often created with random numbers

 Frame update:
 Parameters: simulation of particles, can include collisions with geometry

 Forces (gravity, wind, etc) accelerate a particle

 Acceleration changes velocity

 Velocity changes position

 Rendering:
 GL_POINTS

 GL_POINT_SPRITE

 Point shader

17

Source: http://www.particlesystems.org/

Point Rendering – Vertex Shader
uniform mat4 u_MVPMatrix;
uniform vec3 u_cameraPos;

// Constants (tweakable):
const float minPointScale = 0.1;
const float maxPointScale = 0.7;
const float maxDistance = 100.0;

void main()
{

// Calculate point scale based on distance from the viewer
// to compensate for the fact that gl_PointSize is the point
// size in rasterized points / pixels.
float cameraDist = distance(a_position_size.xyz, u_cameraPos);
float pointScale = 1.0 - (cameraDist / maxDistance);
pointScale = max(pointScale, minPointScale);
pointScale = min(pointScale, maxPointScale);

// Set GL globals and forward the color:
gl_Position = u_MVPMatrix * vec4(a_position_size.xyz, 1.0);
gl_PointSize = a_position_size.w * pointScale;
v_color = a_color;

}

18

Demo
 Particle system in WebGL:

 http://nullprogram.com/webgl-particles/

19

References
 Tutorial with source code by Bartlomiej Filipek, 2014:

 http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-
Renderer

 Articles with source code:

 Jeff Lander: “The Ocean Spray in Your Face”, Game Developer, July 1998
 http://www.darwin3d.com/gamedev/articles/col0798.pdf

 John Van Der Burg: “Building an Advanced Particle System”, Gamasutra,
June 2000
 http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php

 Founding scientific paper:
 Reeves: “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”,

ACM Transactions on Graphics (TOG) Volume 2 Issue 2, April 1983
 https://www.evl.uic.edu/aej/527/papers/Reeves1983.pdf

20

Collison Detection

21

Collision Detection

 Goals:
 Physically correct simulation

of collision of objects
 Not covered here

 Determine if two objects
intersect

 Slow calculation because of
exponential growth O(n2):
 # collision tests = n*(n-1)/2

22

Intersection Testing
 Purpose:

 Keep moving objects on the ground

 Keep moving objects from going through walls, each other, etc.

 Goal:
 Believable system, does not have to be physically correct

 Priority:
 Computationally inexpensive

 Typical approach:
 Spatial partitioning

 Object simplified for collision detection by one or a few
 Points

 Spheres

 Axis aligned bounding box (AABB)

 Pairwise checks between points/spheres/AABBs and static geometry

23

Sweep and Prune Algorithm
 Sorts bounding boxes

 Not intuitively obvious how to sort bounding boxes in 3-space

 Dimension reduction approach:
 Project each 3-dimensional bounding box onto the x,y and z axes

 Find overlaps in 1D: a pair of bounding boxes can overlap if and only if
their intervals overlap in all three dimensions
 Construct 3 lists, one for each dimension

 Each list contains start/end point of intervals corresponding to that dimension

 By sorting these lists, we can determine which intervals overlap

 Reduce sorting time by keeping sorted lists from previous frame, changing
only the interval endpoints

24

Collision Map (CM)
 2D map with information

about where objects can go
and what happens when they
go there

 Colors indicate different
types of locations

 Map can be computed from
3D model, or hand drawn
with paint program

 Granularity: defines how
much area (in object space)
one CM pixel represents

25

Screen Space Ambient Occlusion

26

Screen Space Ambient Occlusion (SSAO)
 “Screen Space”  deferred rendering approach

 Approximates ambient occlusion in real time

 Developed by Vladimir Kajalin (Crytek)

 First use in PC game Crysis (2007)

27

SSAO component

Ambient Occlusion

 Crude approximation of global illumination
 Often referred to as "sky light"
 Global method (not local like Phong shading)

 Illumination at each point is a function of other geometry in
the scene

 Appearance is similar to what objects appear as on an
overcast day
 Assumption: concave objects are hit by less light than convex

ones

28

Basic SSAO Algorithm
 First pass:

 Render scene normally and write z values to G-buffer’s alpha channel

 Second pass:
 Pixel shader samples depth values around the processed fragment and

computes amount of occlusion, stores result in red channel

 Occlusion depends on depth difference between sampled fragment
and currently processed fragment

29

Ambient occlusion values in red color channel
Source: www.gamerendering.com

SSAO With Normals

 First pass:
 Render scene normally and copy z values to G-buffer’s alpha

channel and scene normals to RGB channels

 Second pass:
 Use normals and z-values to compute occlusion between

current pixel and several samples around that pixel

30

With SSAONo SSAO

SSAO Discussion
 Advantages:

 Deferred rendering algorithm: independent of scene complexity

 No pre-processing, no memory allocation in RAM
 Works with dynamic scenes

 Works in the same way for every pixel

 No CPU usage: executed completely on GPU

 Disadvantages:
 Local and view-dependent (dependent on adjacent texel depths)

 Hard to correctly smooth/blur out noise without interfering with depth
discontinuities, such as object edges, which should not be smoothed out

31

SSAO References

 Nvidia’s documentation
 http://developer.download.nvidia.com/SDK/10.5/direct3d/Sourc

e/ScreenSpaceAO/doc/ScreenSpaceAO.pdf

32

