
CSE 167
Discussion 04 ft. Joanna

10/24/2018

Announcements
- Project 3 is due 11/2 2PM
- Midterm I Thursday

- Closed book / no cheat sheets

Contents

- Buffer and shader

- Texture

- Scene graph
- Class hierarchy
- Class implementation
- Example

- Midterm Review

Texture: buffer and shader

Texture: buffer and shader

- Generates the texture
- Similar to “glGenBuffers”

- Let the GPU know that we are going to send a
texture

- “textureID” is the identifier of such texture

Texture: buffer and shader

- Similar to VBOs, we need to bind the texture so OpenGL knows
which texture we are modifying

- (Reminder) OpenGL is a state machine!

- Highly recommended to unbind (bind texture 0) once you’re done

modifying the texture to avoid unexpected results

Texture: buffer and shader

- Load texture and send it to the GPU
- GL_TEXTURE_2D: type of texture
- 0: mimap level
- GL_RGB: Internal representation of the texture in the GPU
- width/height: variable for the texture width/height
- 0: should always be 0
- GL_RGB: Representation of the texture that we are sending
- GL_UNSIGNED_BYTE: Type of individual values in our image

array
- image: memory location where the pixel information is stored

Texture: buffer and shader
1 - Create 2 - Bind

3 - Load & send

4 - Unbind

Texture: buffer and shader
- A texture unit is of type sampler* in the fragment shader

- Usually a sampler2D since we normally use 2D images as textures
- This should be a uniform variable

- uniform sampler2D someVariableName;
- color = texture(someVariableName, TexCoords);

- The value of sampler2D is an unsigned int
- glUniform1i(...); or glUniform1ui(...);
- Value is what textureID is when we generate the texture

Scene graph: class hierarchy

Node

Geometry

head body leg

Transform

...

Scene graph: class implementation
- Use virtual functions

- class Node

{
…
virtual void draw(int program, glm::mat4 M) = 0;

}

class MatrixTransform: public Node
{

…
void draw(int program, glm::mat4 M);

}

The class hierarchy is not equal to the scene graph!!!

Scene graph: example
Army

Robot OBJ

Translation head body leg

Geometry* head = new OBJ(‘head’);

Geometry* larm = new OBJ(‘arm’);

Geometry* rarm = new OBJ(‘arm’);

Scene graph: example(bottom-up)

head rarmlarm

MT* hmtx = new MT(glm::mat4(1.0f));

MT* lmtx = new MT(glm::translate(glm::mat4(1.0f), vec3(-2.0f, 0.0f, 0.0f));

MT* rmtx = new MT(glm::translate(glm::mat4(1.0f), vec3(+2.0f, 0.0f, 0.0f));

Scene graph: example(bottom-up)

head rarmlarm

hmtx rmtxlmtx

hmtx->addChild(head);

lmtx->addChild(larm);

rmtx->addChild(rarm);

Scene graph: example(bottom-up)

head rarmlarm

hmtx rmtxlmtx

MT* modelmtx = new MT(glm::mat4(1.0f));

modelmtx->addChild(hmtx);

modelmtx->addChild(lmtx);

modelmtx->addChild(rmtx);

Scene graph: example(bottom-up)

head rarmlarm

hmtx rmtxlmtx

model
mtx

If we call draw method on satellite right now, it would look like:

Scene graph: example(bottom-up)

head rarmlarm

hmtx rmtxlmtx

model
mtx

MT* leftbot = new MT(glm::translate(glm::mat4(1.0f), vec3(-1.0f, -1.0f, 0.0f));

MT* lefttop = new MT(glm::translate(glm::mat4(1.0f), vec3(-1.0f, +1.0f, 0.0f));

MT* rightbot = new MT(glm::translate(glm::mat4(1.0f), vec3(+1.0f, -1.0f, 0.0f));

MT* righttop = new MT(glm::translate(glm::mat4(1.0f), vec3(+1.0f, +1.0f, 0.0f));

Scene graph: example(bottom-up)

lefttop righttoprightbotleftbot

leftbot->addChild(modelmtx);

lefttop->addChild(modelmtx);

rightbot->addChild(modelmtx);

righttop->addChild(modelmtx);

Scene graph: example(bottom-up)

lefttop righttoprightbotleftbot

head rarmlarm

hmtx rmtxlmtx

model
mtx

Note that there is
only a single instance

of satellite!!! ...

leftbot->addChild(modelmtx);

lefttop->addChild(modelmtx);

rightbot->addChild(modelmtx);

righttop->addChild(modelmtx);

Scene graph: example(bottom-up)

lefttop righttoprightbotleftbot

MT* satellite_party = new MT(glm::mat4(1.0f));

Scene graph: example(bottom-up)

lefttop righttoprightbotleftbot

satellite_party

satellite_party->addChild(leftbot);

satellite_party->addChild(lefttop);

satellite_party->addChild(rightbot);

satellite_party->addChild(righttop);

Scene graph: example(bottom-up)

lefttop righttoprightbotleftbot

satellite_party

If we call draw method on satellite_party right now, it would look like:

Scene graph: example(bottom-up)

lefttop righttoprightbotleftbot

satellite_party

Midterm Topics
- Linear Algebra

- Basic vector properties (dot product, cross product)
- Basic matrix properties (matrix multiplication, inverse, identity)

- Coordinate Systems
- Homogeneous Coordinates
- Scaling, Rotation, Translation
- Model matrix, Camera matrix

- Understand why the normal is not transformed directly by the
model matrix

Midterm Topics
- Projection

- Orthographic vs Perspective
- Parameters for general/symmetric view volume (AKA frustum)

- “Complete Vertex Transformation in OpenGL”
- Understand the whole series of transformations applied to go from

a 3D model vertex to a 2D image position

Midterm Topics
- Illumination

- Phong Illumination Model
- Diffuse
- Specular

- Light Source Properties
- Directional
- Point light
- Spotlight

- Basic facts about lighting, e.g. Gouraud shading vs per-pixel shading,
global illumination vs local (Phong) illumination

Midterm Topics
- Textures

- Mapping, Interpolation
- Wrapping
- Texture coordinates AKA Surface parameterization
- Anti-aliasing via Mipmaps

- Scene Graphs
- Basically just applying data structures for organizing graphics

